PPO 算法全知道:从原理到应用,解锁 AI 优化新姿势

目录

1、PPO (Proximal Policy Optimization)的介绍

2、用打游戏比喻解释PPO

2.1. 传统训练法(朴素策略梯度)的痛点

2.2. PPO的聪明之处: → "渐进式改键位秘籍"

(1) 旧本子+新尝试(重要性采样)

(2) 防走火入魔(Clip机制)

(3) 综合评分(GAE优势估计)

2.3. 实际训练效果

3、相关文章


1、PPO (Proximal Policy Optimization)的介绍

ppo是一种强化学习算法,用于训练智能体(agent)在复杂环境中学习最优策略。简单来说,PPO有以下几个关键特点:

  1. 它是一种策略梯度方法,直接优化智能体的决策策略。
  2. 相比其他算法,PPO更稳定、更容易实现,且性能良好,因此在实践中很受欢迎。
  3. PPO通过限制每次策略更新的幅度来提高训练的稳定性。它引入了一个"裁剪"机制,防止过大的策略变化。
  4. 它使用了"演员-评论家"(Actor-Critic)架构:
    • "演员"(Actor)网络用于生成动作
    • "评论家"(Critic)网络用于估计动作的价值
  5. PPO交替进行数据收集和多轮小批量的策略优化。
  6. 它能有效处理连续和离散的动作空间。

在语言模型领域,PPO被用于 RLHF (基于人类反馈的强化学习)过程,以微调模型使其输出更符合人类偏好。在这种情况下:

  • "演员"是要微调的语言模型
  • "评论家"评估模型输出的质量
  • 奖励信号来自预先训练的奖励模型,代表人类偏好

这种方法帮助语言模型生成更高质量、更符合人类期望的输出。

RL-PPO

2、用打游戏比喻解释PPO

场景设定: 假设你在训练一个AI玩《超级马里奥》,目标是让它尽可能多吃金币、快速通关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据与算法架构提升之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值