一、Yarn的搭建
/opt/installs/hadoop/etc/hadoop 文件夹下:
1、修改mapred-site.xml
指定mapreduce运行平台为yarn:
<!--添加如下配置-->
<!--yarn的配置-->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
2、修改yarn-site.xml
<!--添加如下配置-->
<!--yarn的配置-->
<!--指定resourceManager启动的主机为第一台服务器-->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>node01</value>
</property>
<!--配置yarn的shuffle服务-->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!--为了防止报AppMaster的错误,需要如下配置,可以用 hadoop classpath 来获取value的值-->
<property>
<name>yarn.application.classpath</name>
<value>使用hadoop classpath获取的值</value>
</property>
3、检查hadoop-env.sh 中是否配置了权限
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root
4、分发mapred-site.xml & yarn-site.xml 到另外两台节点上
分发的脚本xsync可以看我的另一篇文章:
大数据中一些实用的脚本
cd /opt/installs/hadoop/etc/hadoop/
xsync.sh mapred-site.xml yarn-site.xml
5、启动和停止yarn平台:
启动: start-yarn.sh
停止: stop-yarn.sh
6、同时启动hdfs和yarn:
start-all.sh
7、启动后jps进程(包含hdfs):
节点 | 进程 |
---|---|
node01 | NameNode,DataNode,ResourceManager,NodeManager |
node02 | SecondaryNameNode,DataNode,NodeManager |
node03 | DataNode,NodeManager |
二、Yarn的概念
负责管理集群中的资源分配和任务调度
Yarn其实就是一个类似于操作系统一样的东西。
Yarn是MapReduce运行的环境,Yarn可以管理程序运行所需要的东西(内存,CPU,带宽等资源)
三、Yarn的组成部分
1、ResourceManager (BOSS): 1个
他用来管理整个的Yarn平台,里面有一个资源调度器。
2、NodeManager (各个机器上的主管) 多个
听从我们的ResouceManager的调遣。是每一台电脑的管家。
3、Container(容器)
每一个NodeManager中,有一个或者多个这样的容器。是包含了一些资源的封装(CPU,内存,硬盘等),类似于我们熟悉的虚拟机。
4、AppMaster (项目经理)
每一个MapReduce任务启动提交后,会有一个对应的AppMaster。这个主要作用是负责整个job任务的运行。
四、Yarn的历史日志jobHistory配置【可选项】
1、mapred-site.xml
<!-- 添加如下配置 -->
<!--yarn的历史日志服务-->
<!-- 历史任务的内部通讯地址 -->
<property>
<name>MapReduce.jobhistory.address</name>
<value>node01:10020</value>
</property>
<!--历史任务的外部监听页面-->
<property>
<name>MapReduce.jobhistory.webapp.address</name>
<value>node01:19888</value>
</property>
<property>
<name>yarn.app.mapreduce.am.env</name>
<value>HADOOP_MAPRED_HOME=/opt/installs/hadoop</value>
</property>
<property>
<name>mapreduce.map.env</name>
<value>HADOOP_MAPRED_HOME=/opt/installs/hadoop</value>
</property>
<property>
<name>mapreduce.reduce.env</name>
<value>HADOOP_MAPRED_HOME=/opt/installs/hadoop</value>
</property>
2、yarn-site.xml
<!-- 添加如下配置 -->
<!--yarn的历史日志服务-->
<!-- 是否需要开启日志聚合 -->
<!-- 开启日志聚合后,将会将各个Container的日志保存在yarn.nodemanager.remote-app-log-dir的位置 -->
<!-- 默认保存在/tmp/logs -->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
</property>
<!-- 历史日志在HDFS保存的时间,单位是秒 -->
<!-- 默认的是-1,表示永久保存 -->
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>604800</value>
</property>
<property>
<name>yarn.log.server.url</name>
<value>http://node01:19888/jobhistory/logs</value>
</property>
3、将mapred-site.xml 和yarn-site.xml 分发到其他两台上
cd /opt/installs/hadoop/etc/hadoop
xsync.sh mapred-site.xml yarn-site.xml
4、启动历史日志服务:jps进程为 JobHistoryServer
mapred --daemon start historyserver
五、Yarn的三种调度器
1、FIFO Scheduler(FIFO调度器)
2、Capacity Scheduler(容量调度器,apache版本默认使用的调度器)
3、Fair Scheduler(公平调度器,CDH版本的hadoop默认使用的调度器)