第4章 复杂网络与图论模型
4.1 复杂网络概念与理论
复杂网络与图论,都是研究事物之间关系的好工具。你可以把“网络”想象成一群人和他们之间的朋友关系,或者电脑之间的连接线。而“图论”呢,就是用数学和图形的方式来研究这些关系。
4.1.1 复杂网络中的基本概念
复杂网络与图论通过节点和边的数学结构,自然地描述了实体间的关系和相互作用。
在图论中,图是由节点和边组成的。节点就像是地图上的城市或者地标,代表着某个具体的事物或对象。而边则像是连接城市的道路,代表着节点之间的关系或连接。你可以想象一个社交网络图,每个用户是一个节点,而用户之间的好友关系就是边。
无向图和有向图是图的两种基本类型。在无向图中,边没有方向。而在有向图中,边是有方向的,就像一条单行道。
节点的度是图论中的一个重要概念,它表示与该节点相连的边的数量。在无向图中,节点的度就是与其相连的边数。而在有向图中,节点的度又分为入度和出度。入度是指指向该节点的边的数量;出度则是从该节点指出的边的数量。
欧拉回路是图论研究中最早的相关问题之一。如果图G(有向图或者无向图)中所有边一次仅且一次行遍所有顶点的通路称作欧拉通路;如果图G中所有边一次仅且一次行遍所有顶点的回路称作欧拉回路。
判断图是否存在欧拉回路的方法也很简单,对于有向图而言图连通,所有的顶点出度=入度;对于无向图而言,图连通,所有顶点都是偶数度。
欧拉回路是不重复遍历边,而哈密顿回路的要求更加严苛一些,需要不重复遍历节点。
4.1.2 复杂网络中的统计指标
图论当中一些基本概念:
连通分支:连通分支是一个图论中的概念。连通分支就是图中