- 博客(323)
- 资源 (1)
- 收藏
- 关注
原创 YOLOv8训练过程日志-深度解析
特别值得注意的是不同类别的性能差异:phone类别的召回率达到0.462,明显高于car类别的0.286,这可能源于两个类别在训练数据中的分布差异、目标特征的明显程度等因素。值得注意的是,损失函数的下降过程并非单调的,而是存在一定的波动,这是梯度下降优化的正常现象。值得注意的是,虽然训练提前停止,但模型已经学习到了有意义的特征表示,这为后续的微调或迁移学习奠定了基础。的训练中,这些指标虽然数值较低,但这在小型数据集和有限训练时间的条件下是正常的,重要的是观察这些指标在训练过程中的变化趋势。
2025-11-28 21:10:36
1200
原创 基于YOLOv8的目标检测系统全流程开发指南
处理的流程是:(1)根据格式问题,仅处理掉那些非图片格式的文件,通过后缀判断,减少了通过读取文件读取的内容分析,以提升处理速度;(3)第三步就是这已经是图片,同时也是彩色图片,但也可能是两张一样的图片,判断图片的内容是否相同,有多种方法,如果是两张图片的哈希值相同,肯定就是同一张图片,或是读取图片的内容,逐一对应单元的比较,来确定是同一张图片。在依据图片后缀和图片的通道处理之后,应该能移除较多的非需要的文件,但是依然可能存在后缀和通道都满足要求,且是两张相同的图片的情况,这时我们也要将重复的图片进行移除。
2025-11-28 01:35:23
112
原创 YOLOv8目标检测技术:从原理到Windows本地化部署的完整指南
YOLOv8以其无锚框的简洁设计、强大的特征融合能力(C2f, PAN-FPN) 和先进的训练策略(Task-Aligned Assigner, DFL),在精度和速度上达到了优异的平衡。在深度学习兴起之前,传统的目标检测方法主要依赖于手工设计的特征(如HOG、SIFT等)和分类器(如SVM),但性能存在瓶颈。,进行双向融合,生成三个(或更多)富含多尺度信息的特征金字塔:P3(下采样8倍,80x80分辨率)、P4(下采样16倍,40x40分辨率)、P5(下采样32倍,20x20分辨率)。
2025-11-17 01:26:28
138
原创 基于感知哈希算法的图片相似度检测与去重系统
其核心思想是利用人类视觉系统的特性,将图像内容转换为固定长度的二进制串(哈希值),使得视觉上相似的图像具有相似的哈希值。该系统能够自动扫描指定文件夹中的图片文件,计算各图片的感知哈希值,通过比较哈希值之间的汉明距离来判断图片相似度,并对相似度较高的图片进行选择性删除。传统的基于文件名的去重方法已无法满足实际需求,因为即使内容相同的图片,如果经过重命名、格式转换或轻微编辑,也会被识别为不同文件。感知哈希通过DCT变换提取图像的低频信息,对图像的几何变换和颜色变化具有更好的鲁棒性,是三种算法中效果最好的。
2025-11-07 12:07:53
1048
原创 CIFAR-10数据集查看与下载原图
将代码保存为Python文件(如extract_cifar10.py),确保CIFAR-10数据集路径正确,CMD运行脚本,所有图像将自动保存到执行文件所在目录的cifar10_images文件夹中。注意:CIFAR-10的图像数据是3072维的向量,前1024维是红色通道,中间1024是绿色,最后1024是蓝色。同时,当前仅可以看到一张图像,假如我们需要所有的图像,则需要其他操作。新建一个python代码文件,将以上代码放在前面的解压目录里,通过CMD进入目录,再执行python文件,即可看到图像。
2025-11-07 11:38:42
911
原创 中国计算机相关领域2025年发文期刊整理
其实,很多单位,目前评职称是只认《中文核心期刊要目总览》的,目前《总览》最新的版本是2023年版,由北京大学图书馆陈建龙、张俊娥主持,联合32家科研机构及高校的148位专家共同编撰,2024年北京大学出版社出版,是自1990年研究启动以来的第十版成果。·研究领域:计算机科学技术,包括:建筑、软件、人工智能、理论计算机科学、网络与通信、信息系统、多媒体和图形、信息安全、跨学科等。·研究领域:实验生物学、理论生物学、计算生物学、系统生物学、合成生物学、数字和人工智能生物学相关的所有学科。
2025-10-27 12:27:00
4482
原创 TensorFlow框架中神经网络模型设计流程
网络模型的实际计算过程会复杂的多,输出的结果往往也与输入数据不再具有相同的维度,这是因为我们需要的模型功能不尽相同。在前向传播过程中,我们完成了模型结构的设计,在反向传播中,我们完成了模型内参数的调整优化,此时,就需要将这二者都保存起来,在需要的时候重新组合在一起,实现具体的识别任务。该环节规定了模型的输入数据形式,计算的过程函数,以及输出数据的形式,这里的数据形式主要指的是数据的矩阵维度以及数值类型。如动物识别中的输入数据就是动物的照片,而照片型的输入数据就需要规范照片的宽高大小,以及颜色通道模式。
2025-10-24 21:48:41
182
原创 基于机器学习的异常流量检测系统的设计与实现(原创)
基于Flask-SQLAlchemy ORM框架,实现数据库表与Python类的映射,封装数据的增删改查(CRUD)操作,向上层业务逻辑层提供统一的数据访问接口,屏蔽数据库底层实现细节(如SQL语句拼接、事务管理等),确保数据操作的安全性和一致性。(1)站点管理与流量监测:站点管理中添加的站点是流量监测的对象,站点的配置信息(如URL、日志路径、检测类型、阈值等)决定了流量监测的方式和参数。(4)站点管理与流量预测:流量预测是针对具体站点的,根据该站点的历史流量数据进行预测。
2025-09-29 21:34:46
953
原创 中越跨境物流管理系统的设计与实现(原创)
功能说明:修改已存在仓库的非核心信息(核心标识“仓库ID”不可修改),包括仓库名称、地址、联系人、容量、状态等,修改“仓库名称”或“国家”时需重新校验“仓库名称+国家”的唯一性,且若仓库已关联库存商品(即有商品归属该仓库),状态不可从“启用”改为“禁用”(需先转移库存),避免影响库存操作。功能说明:创建新的仓库记录,录入仓库基础信息及联系人信息,设置仓库初始容量和状态,新增仓库默认状态为“启用”(可手动改为禁用),且“仓库名称+国家”组合需唯一(避免同一国家内出现重名仓库),确保仓库标识的唯一性。
2025-09-01 21:41:15
1307
3
原创 基于Python3.10.6+Flask+SQLite的中文分词接口使用说明网站开发教程
(2)请求参数:详细说明text(待分词文本)、mode(分词模式)、use_hmm(是否启用 HMM 模型)等参数的类型、必填性和示例值;(1)接口基础信息:服务地址、通信协议(HTTP)、请求方式(POST/GET)、数据格式(JSON)、认证方式(API-Key);(2)扩展初始化:集成SQLAlchemy(数据库)、CORS(跨域)、Limiter(频率限制),满足接口稳定性需求;在项目根目录执行(确保已加载.env环境变量),Windows Server 2022需在PowerShell中运行。
2025-08-19 00:51:05
1319
10
原创 基于Python3.10.6与jieba库的中文分词模型接口在Windows Server 2022上的实现与部署教程
输出:小明/ 硕士/ 毕业/ 于/ 中国/ 科学/ 学院/ 科学院/ 中国科学院/ 计算/ 计算所/ ,/ 后/ 在/ 日本/ 京都/ 大学/ 京都大学/ 深造。print("默认:" + "/ ".join(seg_list)) # 李/ 小福/ 是/ 创新/ 办/ 主任/ 也/ 是/ 云/ 计算/ 方面/ 的/ 专家。jieba(结巴)是由中国开发者fxsjy开发的一款优秀的中文分词工具,目前在GitHub上拥有超过37k的星标,是Python社区中最受欢迎的中文分词库之一。
2025-08-16 14:46:51
1267
12
原创 jieba分词原理深度解析
最后,讲解jieba的实际处理流程,不同分词模式(精确、全模式、搜索引擎模式)的区别,自定义词典的作用机制,以及并行分词的实现方式。引用一些具体的例子,比如分词过程的步骤演示,帮助大家理解。delta [3][M] = max (delta [2][M] × P (M|M), delta [2][E] × P (M|E)) × P ("学"|M)在jieba分词中,主要使用解码问题的解决方案(Viterbi算法),根据观测到的字符序列,预测其对应的状态序列(B/M/E/S),从而实现未登录词的识别。
2025-08-15 00:34:56
1036
原创 Windows server服务器上部署python项目(超详细教程)
(https://lzm07.blog.csdn.net/article/details/150269909),想要部署到服务器上,由于开发和测试都是在windows系统上,所以我们希望在服务器上也采用windows server系统。(2)路径中尽量避免中文或特殊字符(错误中的?(1)工作:仅复制项目到服务器,安装好python环境,进入项目目录,创建和激活虚拟环境,再在阿里云上增加安全规则。如果是如前面,采用阿里云的windows server服务器,则可以用远程桌面,登录服务器,之后,
2025-08-13 00:45:00
3598
原创 Windows server服务器上部署python项目域名访问(超详细教程)
waitress安装好后,会在虚拟环境C:\website\vietnam-study-in-china\vsic-venv\Scripts路径下有waitress-serve.exe,将waitress-serve.exe所在路径添加到系统环境变量。(3)run:app:run指run.py文件(项目的启动文件),app指该文件中定义的Flask实例变量(需与run.py中的实际变量名一致)。否则后面设置的无法访问。(1)在IIS管理器中右键「网站」→「添加网站」,填写域名、物理路径(项目目录)。
2025-08-13 00:08:22
1321
原创 python3.10.6+flask+sqlite开发一个越南留学中国网站的流程与文件组织结构说明
留学趋势分析近年来,中越两国教育交流日益频繁,越南学生赴华留学人数逐年增长。据教育部统计,2023 年越南在华留学生数量突破 5 万人,涵盖基础教育、高等教育、语言培训等多个领域。然而,当前针对越南学生的赴华留学信息平台存在信息分散、语言不通、流程不透明等问题,导致越南学生获取准确留学信息的成本较高。项目价值。
2025-08-12 16:28:16
1274
原创 阿里云ECS的windows server系统如何远程桌面连接
习惯了windows系统,开发了一些网站,就想着服务器系统也用windows server系统,应该这一样的开发者也不在少数。那么购买了windows server系统如何进行快速远程连接,又方便传输文件呢?
2025-08-12 13:46:19
2197
4
原创 文生图工具之ComfyUI从原理到实践的全维度剖析
ComfyUI 支持通过 Python 脚本开发自定义节点,扩展其功能(如添加图像滤镜、接入外部 API)。
2025-08-09 19:59:06
1561
1
原创 在Windows 11+I7+32GB内存+RTX 3060上部署Stable Diffusion 3.5 Medium详细步骤
下载并安装Visual Studio生成工具(Visual Studio Build Tools),如果你看到的是Visual Studio Community版,也可以下载它(包含相同的构建工具)。在Python中,yaml并不是一个官方的包名称,你需要安装的是PyYAML包,它是Python中处理YAML格式的常用库。下载并安装最新的Game Ready驱动程序。下载Python 3.10.x版本(推荐3.10.6,兼容性较好,最新版很多需要的库可能还不支持,当时当前用的是最新版3.13.5)
2025-08-04 18:25:02
687
1
原创 windows系统安装文生图大模型Stable diffusion V3.5 large(完整详细可用教程)
为了便于文件管理,在D盘创建stable-diffusion-models目录,并将stable-diffusion-v3-5-large-Q8_0.gguf文件放入其中:D:\stable-diffusion-models\stable-diffusion-v3-5-large-Q8_0.gguf。打开魔塔社区,网址是:https://www.modelscope.cn/models/gpustack/stable-diffusion-v3-5-large-GGUF/files。先下载自己想要的版本。
2025-08-01 21:40:11
996
2
原创 2025年文生图模型stable diffusion v3.5 large的全维度深度解析
这种加速不仅适用于单一图像生成,还能支持批量处理和实时交互场景(如直播背景切换、动态内容生成),尤其在高分辨率、复杂模型推理中优势明显,成为平衡生成质量与运行效率的关键技术,广泛应用于专业设计、影视制作、移动端部署等领域。二者结合形成了“风格定制 + 结构控制”的双重扩展能力,既支持快速适配垂直领域(如电商商品图、医学插画),又能满足高精度创作需求(如游戏分镜、广告素材),成为连接基础模型与行业应用的核心桥梁,也让开源模型的灵活性与实用性得到最大化释放。对于企业,它是降本增效的生产力工具。
2025-08-01 21:31:39
1084
原创 通义万相文生图模型wan2.2-t2i-flash和wan2.2-t2i-plus全维度深度对比
阿里云在2025年7月发布了通义万相Wan2.2,其中包含文生视频(T2V)和图生视频(I2V)的模型,如Wan2.2-T2V-A14B、Wan2.2-I2V-A14B等。专业模型(如可图Kolors、wan2.2-t2i-plus)的文字清晰度可达85%以上,能生成清晰的中英文短句(如“2025新年快乐”“Hello World”);前文,我们对文生图大模型进行了对比。技术难点:文字生成需要模型同时理解“语义”(文字含义)和“形态”(笔画结构),比生成图像内容更复杂,因此成为衡量模型精细度的重要指标。
2025-07-30 23:03:23
1035
原创 魔塔社区上文生图大模型对比
(2)文字生成能力:是第一个原生支持中文文字生成的文生图模型(无Control逻辑),可准确绘制简单甚至结构复杂的汉字,也支持英文文字生成,兼具设计美学与创意。SDXL 1.0:首创双文本编码器架构,同时使用OpenCLIP ViT-G/14(长文本理解)和CLIP ViT-L/14(旧提示词兼容),支持256 token长输入,能准确渲染“故宫雪景中的红色灯笼”等复合概念。美感提升阶段从海量数据中精选数百万张兼具高质量与高美感的图像进行精细调整,同时提出全新加噪策略,提升生成高分辨率图像时的稳定性。
2025-07-30 20:56:26
5940
原创 多式联运物流管理系统的设计与实现(原创)
在添加车厢页面,选择所属车次,填写车厢编号、车厢类型、载重能力、状态等信息,点击“添加”按钮,系统将车厢信息保存到数据库中,并跳转到铁路运输资源列表页面。在添加车厢页面,选择所属车次,填写车厢编号、车厢类型、载重能力、状态等信息,点击“添加”按钮,系统将车厢信息保存到数据库中,并跳转到铁路运输资源列表页面。在添加用户页面,填写用户名、密码、角色等信息,点击“添加”按钮,系统将验证用户名是否已存在,如果不存在则将用户信息保存到数据库中,并跳转到用户账户列表页面。用户账户管理与用户权限和用户角色管理密切相关。
2025-07-19 13:44:30
1317
4
原创 python爬取新浪财经网站上行业板块股票信息的代码
script_dir通过os.path获取脚本所在目录的绝对路径,确保所有生成的文件(CSV、日志等)统一保存至此目录,避免路径混乱。日志配置(logging.basicConfig)定义:配置日志级别(INFO)、格式(包含时间、级别、信息)、输出文件(行业板块爬取日志.log作用:记录程序运行过程(如 “页面加载成功”“解析失败”),便于调试和追踪问题(日志文件保存到脚本目录)。代码通过封装成。
2025-07-13 22:37:49
2691
4
原创 使用VMware Workstation pro 17.5.1在Windows上安装Ubuntu 24.04.2的 详细步骤
选择 ubuntu-24.04.2-desktop-amd64.iso(桌面版)或 ubuntu-24.04.2-live-server-amd64.iso(服务器版)。,用于:局域网内设备识别(如 ping ubuntu-server),SSH远程访问(如ssh user@ubuntu-server),系统日志和终端提示符显示。启动后进入 Ubuntu 安装界面 → 选择 English 或 中文(简体) → 点击 安装 Ubuntu。仅使用小写字母、数字和短横线(如 my-server-01)
2025-07-09 14:26:40
330
原创 基于 Python 的批量文件重命名软件设计与实现
对于有特殊需求的用户,可以通过编写自定义的 Python 代码来实现独特的重命名规则。自定义函数需要接收文件名和扩展名作为参数,并返回新的文件名。支持用户编写自定义的 Python 函数来实现特殊的重命名规则,函数需要接收文件名和扩展名作为参数,并返回新的文件名。操作步骤在 "自定义规则" 区域勾选复选框在代码输入框中编写自定义重命名函数预览或执行重命名示例代码# 在文件名前添加当前日期根据文件创建日期重命名根据文件大小重命名从文件名中提取特定信息重新排列问题现象。
2025-06-25 23:34:22
2798
34
原创 python的kivy框架界面布局方法详解
Kivy 是一个开源的 Python 库,用于快速开发跨平台的应用程序,支持 Windows、macOS、Linux、iOS 和 Android 等多个平台。它采用了自然用户界面(NUI)的设计理念,支持多点触控等交互方式。Kivy 的界面布局系统基于 Widget 树结构,提供了丰富的布局管理器和灵活的属性配置。BoxLayout 是Kivy 中最常用的布局管理器之一,它按照水平或垂直方向排列子 Widget。通过设置 orientation 属性,可以指定布局方向为水平('
2025-06-25 16:43:51
2141
15
原创 Python的GUI库选择指南(深度拓展)
前文我们分析了python的GUI库,有很多,面向应用场景也不尽相同,如何在使用过程中,选择合适的GUI库呢?sg.Window("标题", [[sg.Text("内容")]]).read()文档更新滞后,部分高级功能需查阅C++版WxWidgets文档。Button(root, text="点击").pack()深度定制能力较弱,复杂动画效果需手写 HTML/CSS。通过Nginx反向代理实现公网访问,需注意端口映射。动画效果有限,复杂交互需自定义原生代码。注意:避免复杂动画,优先使用轻量级组件。
2025-06-24 21:26:30
1616
16
原创 python有哪些常用的GUI(图形用户界面)库及选择指南
Python的GUI库生态系统提供了多样化的选择,从简单的标准库到功能强大的第三方框架。对于大多数情况,PyQt5 和 Tkinter 是最常用的选择,前者适合复杂应用,后者适合快速原型。随着 Web 技术的发展,Web 集成方案(如 Remi)也逐渐受到关注,成为跨平台开发的新选择。python有哪些GUI库,分别是什么,各自有什么特点和具体的应用场景,以及各个库的主要组成结构是什么?Python提供了多种 GUI(图形用户界面)库,每个库都有其独特的设计理念、适用场景和技术架构。
2025-06-24 20:46:28
3457
10
原创 基于Vue.js的图书管理系统前端界面设计的javascript逻辑部分
除了上述有关图书管理、借阅管理、用户管理的计算属性外,还定义了四个计算属性,这些计算属性基于响应式数据books、borrows和users动态计算得出新的数据,并且会根据依赖数据的变化自动更新。,相较于Vue 2的Object.defineProperty,它能更好地支持嵌套对象的响应式追踪,减少了初始化时的递归遍历开销,同时能够检测到对象属性的新增和删除,使响应式数据的处理更加高效和全面。有'dashboard'、'books'、'borrows'、'users' 等值。
2025-06-23 14:43:07
1131
4
原创 Vue 3里的生命周期钩子(Lifecycle Hooks)
Vue 3提供了与Vue 2相似但语法有所不同的生命周期钩子,并且支持组合式API和选项式API两种使用方式。组件的生命周期涵盖了从创建、挂载到更新,再到销毁的整个过程,而。通过使用生命周期钩子,开发者可以更好地控制组件在不同阶段的行为,确保组件的正常运行和资源的合理利用。现在前端开发中,vue3越来越受欢迎,想要学会如何使用Vue3,就要先了解什么是周期钩子。在组件挂载到DOM之后调用,此时可以访问到真实的DOM元素。,适合在DOM更新后执行一些操作,如重新计算布局。,可用于在挂载前做最后的准备工作。
2025-06-23 14:10:46
544
2
原创 基于Vue.js的图书管理系统前端界面设计
点击“编辑”按钮调用 openUserModal方法,弹出编辑用户模态窗,点击“封禁”按钮调用 toggleUserBlock方法,弹出确认是否封禁用户的模态窗。点击“归还”按钮调用 returnBook方法,弹出确认归还图书模态窗,点击“查看详情”按钮调用 viewBorrowDetails方法,弹出该书的借阅详情和借阅历史模态窗。点击“编辑”按钮调用 openBookModal 方法,弹出编辑图书模态窗,点击“删除”按钮调用 deleteBook 方法,弹出确认删除图书模态窗。
2025-06-22 21:52:46
2007
30
原创 Python的6万张图像数据集CIFAR-10和CIFAR-100说明
(1)label_names:一个包含10个元素的列表,它为上述 labels 数组中的数字标签提供有意义的名称。每个图像都带有一个“fine”标签(它所属的类)和一个“coarse”标签(它所属的超类)。前1024个字节是红色通道值,接下来的1024个字节是绿色通道值,最后1024个字节是蓝色通道值。中,他使用贝叶斯超参数优化来找到权重衰减和其他超参数的不错设置,这使他能够在使用15%的网络架构能力的基础上,能够获得18%的测试错误率(没有数据增强)。的“行”图像,尽管没有分隔这些行的内容。
2025-06-21 23:15:25
1342
24
原创 基于Python、tkinter、sqlite3 和matplotlib的校园书店管理系统
使用Python 3.x版本,建议使用最新版,当前使用的是3.12版,python官网:www.python.org。原理说明:导入所需的Python库和模块,tkinter用于创建GUI,sqlite3用于数据库操作,datetime用于处理日期时间,os用于操作系统相关操作,matplotlib用于数据可视化,configparser用于读取和写入配置文件。为了持久化配置信息,本系统使用了ini文件来存储配置信息,自然在加载程序之前,就要先加载配置信息,因此,在导入依赖包之后,就开始读取配置文件。
2025-06-21 11:30:34
1972
16
原创 一个完整的 Double Q-Learning示例(python实现)
外层循环:控制训练的总回合数(episodes)内层循环:控制每个回合内的交互步数(steps)智能体 - 环境交互:执行动作 → 接收反馈 → 更新策略数据预处理多轮实验取平均以减少随机性移动平均平滑曲线,突出趋势视觉编码颜色区分不同算法区间填充表示不确定性可读性优化清晰的标题和轴标签适当的网格线和图例此代码通过科学的可视化设计,为强化学习算法对比提供了直观的分析工具,有助于快速识别算法性能差异和稳定性特征。数据预处理确保 Q 表数值范围合理,避免极端值影响整体可视化效果。
2025-06-06 02:00:00
1411
49
原创 基于值函数的强化学习算法之Double Q-Learning详解
马尔可夫决策过程(MDP)是强化学习的数学框架,由五元组〈S, A, P, R, γ〉定义:其中S是所有可能状态的集合(状态空间),A是智能体可执行动作的集合(动作空间),P是状态转移概率函数(表示在状态s执行动作a后转移到状态s'的概率,即P(s'|s,a)),R是奖励函数(给出在状态s执行动作a并转移到状态s'后获得的即时奖励,即R(s,a,s')),γ是折扣因子(取值范围0≤γ<1,用于权衡当前奖励与未来奖励的重要性,γ越接近1表示越重视长期回报)。单元格中存储对应状态-动作对的Q值,即Q(s,a)
2025-06-06 00:00:00
1804
24
原创 将图形可视化工具的 Python 脚本打包为 Windows 应用程序
前文我们已经写了一个。在前文基础上,为了更好管理,以及便于生成exe,现将所有文件都存放桌面的GraphVisualizerApp文件夹中。
2025-06-05 09:54:04
1949
25
原创 基于Python的tkinter库的图形可视化工具(15种图形的完整代码)
前文,我们开发了一个基于Python的tkinter库的图形可视化工具,其中包括了饼图、柱状图、折线图、散点图、直方图5 种图形,然而日常中,常用的图形还有很多,接下来,我们在原有基础上进行升级,继续增加10种常用的图形。
2025-06-05 02:00:00
1831
19
原创 Python中库的安装使用过程详解
1.库的定位和用途pandas 是 Python 中用于数据处理和分析的核心库,提供了高效、灵活的数据结构(如 DataFrame 和 Series),使数据清洗、分析、可视化等任务变得更加简单。它建立在 NumPy 之上,与其他科学计算库(如 Matplotlib、SciPy)无缝集成。2.主要特性快速高效的 DataFrame 对象,支持异构数据集成时间序列功能提供灵活的数据对齐和缺失数据处理机制支持从多种数据源(CSV、Excel、SQL 数据库等)读取和写入数据。
2025-06-04 11:38:56
2067
11
原创 基于Python的tkinter库开发的一个图形可视化工具(完整代码)
很多时候,我们希望有一个程序,能够直接设置不同的参数,就显示这个图形的效果,基于这样的目的,今天我们设计开发一个基于python的tkinter库的一个图形可视化程序。以下是一个实现了的界面效果:你可以运行这个程序,通过菜单选择不同的图形类型,然后在左侧设置参数,右侧就会实时显示图形效果。接下来,我们将详细讲解这个程序是如何实现的:这个图形可视化工具基于 Python 的 tkinter 和 matplotlib 库开发,提供了一个直观的界面来创建和定制不同类型的图形。
2025-06-04 03:30:00
1398
28
非凸优化算法的测试函数Goldstein-Price函数(Goldstein-Price function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Easom函数(Easom function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Michalewicz函数(Michalewicz function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Levy函数(Levy function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Three-hump camel函数(Three-hump camel function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Eggholder函数(Eggholder function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Schwefel函数(Schwefel function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Ackley函数(Ackleyfunction)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Griewank函数(Griewank function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Cross-in-Tray函数(Cross-in-Tray function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Rastrigin函数(Rastrigin function)的Python代码,实现3D效果
2024-12-19
非凸优化算法的测试函数Rosenbrock函数(Rosenbrock's function)的Python代码,实现3D效果
2024-12-19
vue3实现自定义导航菜单的案例代码
2024-11-28
Vue 3中实现多个自定义组件之间的切换的案例代码
2024-11-27
vue2自定义注册和登录组件并实现在页面中切换的案例代码
2024-11-27
文生图模型stable-diffusion-webui
2025-08-06
基于Python、tkinter、sqlite3 和matplotlib的校园书店管理系统
2025-06-21
一个完整的 Double Q-Learning示例(python实现)
2025-06-05
将图形可视化工具的 Python 脚本打包为 Windows 应用程序
2025-06-05
基于Python的tkinter库的图形可视化工具(15种图形的完整代码)
2025-06-04
基于Python的tkinter库开发的一个图形可视化工具(完整代码)
2025-06-03
从零开始构建一个小型字符级语言模型的完整python示例代码
2025-02-20
DeepSeek-R1-Distill-Qwen-1.5B-Q8-0.gguf(第一部分)
2025-02-14
DeepSeek-R1-Distill-Qwen-1.5B-Q8-0.gguf(第二部分)
2025-02-14
DeepSeek基于DeepSeek-R1-1.5B.gguf的RAG微调项目完整文件包(第一部分)
2025-02-11
DeepSeek基于DeepSeek-R1-1.5B.gguf的RAG微调项目完整文件包(第二部分)
2025-02-11
DeepSeek基于DeepSeek-R1-1.5B.gguf的RAG微调项目完整文件包(第三部分)
2025-02-11
Visual Studio Build Tools之vs-BuildTools-2025.2.9.exe
2025-02-09
Git-2.47.1.2-64-bit-2025.2.9.exe
2025-02-09
cmake-3.31.5-windows-x86-64-2025.2.9.msi
2025-02-09
DeepSeek大模型的DeepSeek-R1-Distill-Qwen-1.5B-GGUF版本,2025.2.6最新版的安装包OllamaSetup.exe
2025-02-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅