多目标优化策略中的理想点法(Ideal Point Method),又名极值点法,是一种处理决策中多个相互冲突目标的优化方法。更多策略可以查看我的文章:多目标优化算法之一:基于分解的方法_多目标优化怎么拆解模型求解-CSDN博客
更多基于数学规划的多目标优化策略可以查看:
多目标优化策略之二:加权求和法(附带详细案例和代码)-CSDN博客
多目标优化策略之三:极大极小法(附带详细案例和代码)-CSDN博客
一、基本原理
理想点法是一种多目标优化策略,旨在找到最接近理想点的解决方案,即寻找一个在所有目标上都达到最优的理想解。理想点是指每个目标函数在单独优化时所能达到的最优值所构成的点。该方法通过以下步骤辅助决策者选择最优方案:
1.定义目标函数:明确问题的多个目标以及约束条件,为多目标优化问题建立数学模型。
2.求解理想点和反理想点:
(1)理想点:在所有目标上均达到最优的解,即每个目标函数的最优值组成的向量。理想点是一个理论上的参考点,在实际情况中不存在任何解能同时达到所有目标的最优值。
(2)反理想点:在所有目标上均达到最差的解,同样是一个理论上的参考点,代表了所有目标的最低可接受水平。
3.评估解的质量:通过计算实际解与理想点和反理想点的距离来评估解的质量。常用的距离度量是欧几里得距离。
4.考虑不可达的理想点情况:由于理想点通常是不可达的,因此评估解时需要考虑其与理想点的相对接近程度。
二、数学模型
假设有多个目标函数,
表示第
个目标函数在单独优化时所能达到的最优值,
表示第
个目标函数在单独优化时所能达到的最差值。
计算步骤如下:
(1)确定理想点:对于每个目标函数,单独优化得到其最优值
,构成理想点
。
(2)计算距离:对于每个可能的决策 ,计算其目标函数值
与理想点
之间的距离。
(3)选择最优决策:选择使距离最小的决策,即最接近理想点的解决方案。