多目标优化策略之四:理想点法(附带详细案例和代码)

        多目标优化策略中的理想点法(Ideal Point Method),又名极值点法,是一种处理决策中多个相互冲突目标的优化方法。更多策略可以查看我的文章:多目标优化算法之一:基于分解的方法_多目标优化怎么拆解模型求解-CSDN博客

更多基于数学规划的多目标优化策略可以查看:

多目标优化策略之二:加权求和法(附带详细案例和代码)-CSDN博客

多目标优化策略之三:极大极小法(附带详细案例和代码)-CSDN博客

一、基本原理

        理想点法是一种多目标优化策略,旨在找到最接近理想点的解决方案,即寻找一个在所有目标上都达到最优的理想解。理想点是指每个目标函数在单独优化时所能达到的最优值所构成的点。该方法通过以下步骤辅助决策者选择最优方案:

        1.定义目标函数:明确问题的多个目标以及约束条件,为多目标优化问题建立数学模型。

        2.求解理想点和反理想点:

        (1)理想点:在所有目标上均达到最优的解,即每个目标函数的最优值组成的向量。理想点是一个理论上的参考点,在实际情况中不存在任何解能同时达到所有目标的最优值。

        (2)反理想点:在所有目标上均达到最差的解,同样是一个理论上的参考点,代表了所有目标的最低可接受水平。

        3.评估解的质量:通过计算实际解与理想点和反理想点的距离来评估解的质量。常用的距离度量是欧几里得距离。

        4.考虑不可达的理想点情况:由于理想点通常是不可达的,因此评估解时需要考虑其与理想点的相对接近程度。

二、数学模型

        假设有多个目标函数f_{i}^{*}表示第i个目标函数在单独优化时所能达到的最优值,f_{i}^{-}表示第i个目标函数在单独优化时所能达到的最差值。

        计算步骤如下:

        (1)确定理想点:对于每个目标函数f_{i}(x),单独优化得到其最优值f_{i}^{*},构成理想点

        (2)计算距离:对于每个可能的决策 x,计算其目标函数值f_{i}(x)与理想点f_{i}^{*}之间的距离。

        (3)选择最优决策:选择使距离最小的决策,即最接近理想点的解决方案。

1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

搏博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值