从零开始构建一个小型字符级语言模型的详细教程(基于Transformer架构)之二模型架构设计

        最近特别火的DeepSeek,是一个大语言模型,那一个模型是如何构建起来的呢?DeepSeek基于Transformer架构,接下来我们也从零开始构建一个基于Transformer架构的小型语言模型,并说明构建的详细步骤及内部组件说明。我们以构建一个字符级语言模型(Char-Level LM)为例,目标是通过训练模型预测序列中的下一个字符

        全文采用的python语言。

        想了解个人windows电脑上安装DeepSeek大模型,看我的文章:个人windows电脑上安装DeepSeek大模型(完整详细可用教程)_deepseek-r1-distill-qwen-1.5b-gguf-CSDN博客

        本文的前置基础,Windows安装Hugging Face Transformers库,看我的文章:Windows安装Hugging Face Transformers库并实现案例训练的详细教程-CSDN博客

        请务必先看完前文:从零开始构建一个小型字符级语言模型的详细教程(基于Transformer架构)之一-CSDN博客

一、整体流程概览

        听说了太多的大模型,那么大模型是如何一步一步建立起来的呢?我们接下来就从一个小的模型开始,逐步分解,让大家知道其中的逻辑、构成等关键内容。从基础开始,逐步实现,包括数据准备、模型架构、训练和评估。

首先,确定模型的目标

然后,是模型架构

接下来,是训练过程

        所以综合,本文将从以下步骤实现一个小模型:

1.数据准备 → 2.模型架构设计 → 3.训练 → 4.评估与生成

二、详细步骤与组件说明

2. 模型架构设计

        目标:实现一个简化版Transformer解码器

        模型架构设计阶段的流程如下:

图6 模型架构设计阶段的流程

2.1 输入层 (Input Layer)

(1)输入层参数说明

上文我们为了绘制演示图,使用了很简单的示例,接下来部分设置的参数有一些不一样,注意区分。

1)批尺寸 (batch_size=32)

作用:控制单次参数更新时使用的样本数量

平衡考量:较小值(如16),内存占用低但梯度更新噪声大;当前值32

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

搏博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值