一、树
1.概念
-
树是一种典型的非线性结构
-
特点:
- 每个节点都有零个或多个子节点
- 没有父节点的节点称为根节点
- 每一个非根节点都有且只有一个父节点
- 除了根节点外,每个子节点都可以分为多个不相交的子树
2.术语
- 节点的度:一个节点含有的子树的个数称为该节点的度;
- 树的度:一棵树中,最大的节点的度称为树的度;
- 叶节点或终端节点:度为零的节点;
- 父亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
- 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;
- 兄弟节点:具有相同父节点的节点互称为兄弟节点;
- 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
- 树的高度或深度:树中节点的最大层次;
- 堂兄弟节点:父节点在同一层的节点互为堂兄弟;
- 节点的祖先:从根到该节点所经分支上的所有节点;
- 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
- 森林:由m(m>=0)棵互不相交的树的集合称为森林;
3.树的种类及存储
1)树的种类
-
无序树:树中任意节点的子节点之间没有顺序关系
-
有序树:
- 霍夫曼树(用于信息编码):带权路径最短的二叉树称为哈夫曼树或最优二叉树
- B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多于两个的子树
2)二叉树
-
每个节点最多含有两个子树的树称为二叉树
-
完全二叉树:
- 对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值
- 且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树
-
满二叉树的定义是所有叶节点都在最底层的完全二叉树
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4FgQ0Mnl-1604975476238)(C:\Users\lzq\AppData\Roaming\Typora\typora-user-images\image-20200908151247899.png)]
-
平衡二叉树:当且仅当任意节点的子树层数相差不大于1的二叉树
-
排序二叉树(二叉查找树、有序二叉树):
- 1.若左子树不空,则左子树上所有节点的值均小于它的根节点的值
- 2.若右子树不空,则右子树上所有节点的值均大于它的根节点的值
- 3.左、右子树也分别为二叉排序树
3)二叉树的存储
顺序存储:将数据结构存储在固定的数组中
链式存储:每个节点有一个元素域和两个指针域
4.二叉树的概念和性质
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-V6ZBT8Gg-1604975476239)(C:\Users\lzq\AppData\Roaming\Typora\typora-user-images\image-20200908155515486.png)]
二、二叉树的遍历
1.二叉树的代码实现
class Node(object):
"""节点类"""
def __init__(self, item):
self.item = item
self.lchild = None
self.rchild = None
class BinaryTree(object):
"""二叉树类"""
def __init__(self, node = None):
self.root = node
def add(self, item):
"""添加节点"""
if self.root is None:
self.root = None(item)
# 定义对列
queue = []
# 从尾部添加数据
queue.append(self.root)
while True:
node = queue.pop(0)
# 判断左节点是否为空
if node.lchild is None:
node.lchild = Node(item)
return
else:
queue.append(node.lchild)
# 判断右节点是否为空
if node.rchild is None:
node.rchild = Node(item)
return
else:
queue.append(node.rchild)
2.广度优先遍历
def breadth_travel(self):
"""广度优先遍历"""
if self.root is None:
return
# 定义对列
queue = []
# 从尾部添加数据
queue.append(self.root)
while len(queue) > 0:
node = queue.pop(0)
print(node.item, end="")
# 判断左节点是否为空
if node.lchild is not None:
queue.append(node.lchild)
# 判断右节点是否为空
if node.rchild is not None:
queue.append(node.rchild)
3.深度优先遍历
先序:根 左 右
def preorder(self, root):
"""深度优先先序遍历"""
if root is None:
return
print(root.item)
self.preorder(root.lchild)
self.preorder(root.rchild)
中序:左 根 右
def inorder(self, root):
"""深度优先中序遍历"""
if root is None:
return
self.preorder(root.lchild)
print(root.item)
self.preorder(root.rchild)
后序:左 右 根
def postorder(self, root):
"""深度优先后序遍历"""
if root is None:
return
self.preorder(root.lchild)
self.preorder(root.rchild)
print(root.item)
4.由遍历结果反推二叉树
- 根据 中序遍历 和 先序遍历或后序遍历 来反推二叉树
n
self.preorder(root.lchild)
self.preorder(root.rchild)
print(root.item)
## 4.由遍历结果反推二叉树
- 根据 **中序遍历** 和 **先序遍历或后序遍历** 来反推二叉树