我们先来分析一下原始的Joseph问题:有N个人排成一圈,编号从1到N,选择一个数M,第1个人从1开始报数,报到第M的人拉出去枪毙,他的下一位从1开始重新报数,报M的人枪毙,如此进行下去,最后剩下的一个人才可以生还。问剩下的这个人的编号是多少?
我们来看,假设第1个枪毙的人编号是m,显然m = (M - 1) % N + 1:
1 2 3 .... m-1 m m+1 .... N (1)
剩下的人为:
m+1 ... N 1 2 ... m-1 (2)
编号为m+1的人从1开始报数,我们对(2)重新编号:
1 ... N-m N-m+1 ... N-1 (3)
很显然,(3)又是一个(N-1,M)的Joseph问题,因此我们可以得出如下结论:
断言1:
(1)中枪毙的第i个人就是(3)中枪毙的第i-1个人,2 <= i <= N-1
很显然,有
推论1:
(1)中生还的人就是(3)中生还的人。
我们来建立(3)到(2)的映射函数g(i) = (i + M - 1) % N + 1 (4)
我们把g(i)变换一下g(i) = (i + M - 1) % N + 1 = (i + (M - 1) % N + 1 - 1) % N + 1 = (i + m - 1) % N + 1,很显然g(i)把(3)的有序序列映射到了(2)的有序序列。
由推论1及上面的映射函数g(i),我们很容易解原始的Joseph问题,设(1)生还的人的编号为L(N),(3)中生还的人编号为L(N-1),他们是同一个人,并且满足:
L(N) = g(L(N-1)) = (L(N-1) + M - 1) % N + 1,显然L(1) = 1。编程解该递归问题是很简单的事情。
现在回到POJ 1012要解决的问题上来。简单叙述一下问题:2k个人的,要求最先枪毙的k个人的编号不能是[1...k],求最小的M。
设(1)中枪毙的第i个人为f(i, N) ,N = 2k, 1 <= k <= 13,由断言1,我们有f(i, N) = g(f(i - 1, N - 1)) = (f(i - 1, N - 1) + M - 1) % N + 1,显然f(1, N) = (M - 1) % N + 1。对于给定的M,我们可以检查f(i, N) (1 <= i <= k)是否不属于[1...k],由此来判定M是否符合要求。剩下的问题就是对于M的选择,我们选择集合K = {2kt + i, k+1 <= i <= 2k, t 为自然数},很显然问题的解属于K。令w(t, i) = 2kt + i, 2kt + k + 1 <= w(t, i) <= 2k(t + 1) < 2k(t + 1) + k + 1 <= w(t + 1, i) <= 2k(t + 2),得出w(t, i) < w(t + 1, i),因此我们先选定t,遍历i的取值范围[k+1, 2k],再递增t,直到得出问题的解,并且该解是最少的。
编写出的程序如下:POJ上 384K, 375MS
#include <stdio.h>
#define MAX_K 13
static int s_solution[MAX_K] = {0, };
static int f(int i, int n, int m)
{
if (1 == i) {
return (m - 1) % n + 1;
}
return (f(i - 1, n - 1, m) + m - 1) % n + 1;
}
static int is_solution(int k, int m)
{
int i;
for (i = 1; i <= k; i++) {
if (f(i, k << 1, m) <= k) {
return 0;
}
}
return 1;
}
static int compute_m(int k)
{
int m, i, t;
for (t = 0; ; t++) {
for (i = k + 1; i <= (k << 1); i++) {
m = (k << 1) * t + i;
if (is_solution(k, m)) {
return m;
}
}
}
return 0;
}
int main()
{
int k;
while (scanf("%d", &k) > 0 && k) {
printf("%d\n", s_solution[k - 1] ?
s_solution[ k - 1] :
(s_solution[k - 1] = compute_m(k)));
}
return 0;
}