
机器学习
&刘仔很忙
这个作者很懒,什么都没留下…
展开
-
L1与smooth L1损失函数
L1范数损失函数也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE)。总的说来,它是把目标值(Yi)与估计值(f(xi))的绝对差值的总和(S)最小化:优点:无论对于什么样的输入值,都有着稳定的梯度,不会导致梯度爆炸问题,具有较为稳健性的解。缺点:在中心点是折点,不能求导,不方便求解。smooth L1损失函数其实顾名思义,smooth L1说的是光滑之后的L1,前面说过了L1损失的缺点就是有折点,不光滑,导致不稳定,那如何让其变得光滑呢?smooth L1损失函数为:sm原创 2020-12-22 17:05:45 · 581 阅读 · 0 评论 -
one-hot编码
博主原创文章,转载请注明出处https://www.cnblogs.com/shuaishuaidefeizhu/p/11269257.html一、什么是one-hot编码?One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。..转载 2020-12-06 17:07:31 · 128 阅读 · 0 评论 -
PCA主成分分析
本文链接:https://blog.csdn.net/luoluonuoyasuolong/article/details/90711318PCA 用来干什么?PCA呀,用来做什么呢?这个很重要,PCA也有很多应用,可能我们之前听过用PCA做人脸识别,PCA做异常检测等等。但事实上PCA没有那么强大的功能,PCA能做的事其实很有限,那就是:降维。其他拓展应用都是在这基础上做了相应额工作。为什要降维呢?很明显,数据中有些内容没有价值,这些内容的存在会影响算法的性能,和准确性。如上图,数据点大部分都分转载 2020-12-01 20:59:37 · 663 阅读 · 0 评论 -
模型评估与选择
模型的选择误差误差:(Error): 是模型的预测输出值与其真实值之间的差异 训练(Training): 通过已知的样本数据进行学习, 从而得到模型的过程 训练误差(Training Error): 模型作用于训练集的误差 泛化(Generalize): 由具体的, 个别的扩大为一般的, 即从特殊都一般, 称为泛化. 对机器学习的模型来讲, 泛化是指模型作用于新的样本数据(非训练集) 泛化误差(Generalization Error): 模型作用于新样本数据时候的误差 误差 欠转载 2020-10-04 17:28:28 · 295 阅读 · 0 评论