uva 10003 - Cutting Sticks 动态规划

题目

换一个思路,剪不好处理,拼接怎么样?这就转化成了“合并石子”的问题。有n堆石子,排成一列,每次可以将相邻两堆合并,合并的费用为合并后得到新的一堆石子的石子数,将所有石子合并成一堆,求最小的合并费用。

那这题怎么写对拍呢?给出木棍的范围[a,b),找出这段范围内可以剪的位置,枚举剪的位置,转化为另一个规模较小的子问题,这又可以用动态规划来做。但是其复杂度是O(N*I*I),I为木棍的最大长度,N为测试样例。uva会冷冰冰地告诉你"time limit exceeded"。但不失为一个好的对拍方案。

dp:

#include<cstdio>
#include<cstring>
#include<math.h>
#include<stdlib.h>
#include<algorithm>
#include<ctime>
#include<iostream>
#define INF 1<<30
using namespace std;
const int maxn=50+10;
int sum[maxn];
int f[maxn][maxn];

int dp(int i,int j)
{
	int &ans=f[i][j];
	if(ans!=-1) return ans;
	if(i==j) return ans=0;//只有一根,不用拼接 
	ans=INF;
	for(int k=i;k<=j-1;k++)//枚举最后一次拼接位置 
	  ans=min(ans,dp(i,k)+dp(k+1,j));
  ans+=sum[j]-sum[i-1];
  return ans;
}//

int main()
{
#ifndef ONLINE_JUDGE
  freopen("in.txt","r",stdin);
#endif
	int i,j;
	int I,n;
	while(scanf("%d",&I)==1 && I)
	{
		scanf("%d",&n);
		sum[0]=0;
		for(i=1;i<=n;i++)
		{
			scanf("%d",&sum[i]);
		}
		sum[n+1]=I;
		//for(i=0;i<=n+1;i++) printf("%d\n",sum[i]);
		memset(f,-1,sizeof(f));
		printf("The minimum cutting is %d.\n",dp(1,n+1));//最后共有n+1根木头 
	}
	//printf("%.2lf\n",(double)clock()/CLOCKS_PER_SEC);
  return 0;
}

/*
*/

对拍:

#include<cstdio>
#include<cstring>
#include<math.h>
#include<stdlib.h>
#include<algorithm>
#include<ctime>
#include<iostream>
using namespace std;
const int INF=1<<30;
const int maxn=50+10;
const int maxi=1000+10;
int c[maxn],n;
int f[maxi][maxi];

int dfs(int a,int b)//[a,b)
{
	int &ans=f[a][b];
	if(ans!=-1) return ans;
	int pos[maxn],pn=0;
	int i;
	for(i=0;i<n;i++)
	  if(c[i]>a && c[i]<b)
	  {
  		pos[pn++]=c[i];
  	}
	if(pn==0) return 0;
	ans=INF;
	for(i=0;i<pn;i++)
	  ans=min(ans,dfs(a,pos[i])+dfs(pos[i],b));
  ans+=b-a;
  return ans;
}

int main()
{
#ifndef ONLINE_JUDGE
  freopen("in.txt","r",stdin);
#endif
	int i,j;
	int I;
	while(scanf("%d",&I)==1 && I)
	{
		scanf("%d",&n);
		for(i=0;i<n;i++) scanf("%d",&c[i]);
		memset(f,-1,sizeof(f));
		printf("The minimum cutting is %d.\n",dfs(0,I));
	}
	//printf("%.2lf\n",(double)clock()/CLOCKS_PER_SEC);
  return 0;
}

/*
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值