Flink DataStream 算子 Map、FlatMap、Filter、KeyBy、Reduce、Fold、Aggregate

总结Flink DataStream 算子: Map、FlatMap、Filter、KeyBy、Reduce、Fold、Aggregate 的使用。

Map [DataStream->DataStream]
Map: 一对一转换,即一条转换成另一条。

package com.bigdata.flink.dataStreamMapOperator;

import com.bigdata.flink.beans.UserAction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.Arrays;

/**
 * Summary:
 *      Map: 一对一转换
 */
public class DataStreamMapOperator {
    public static void main(String[] args) throws Exception{

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 输入: 用户行为。某个用户在某个时刻点击或浏览了某个商品,以及商品的价格。
        DataStreamSource<UserAction> source = env.fromCollection(Arrays.asList(
                new UserAction("userID1", 1293984000, "click", "productID1", 10),
                new UserAction("userID2", 1293984001, "browse", "productID2", 8),
                new UserAction("userID1", 1293984002, "click", "productID1", 10)
        ));

        // 转换: 商品的价格乘以8
        SingleOutputStreamOperator<UserAction> result = source.map(new MapFunction<UserAction, UserAction>() {
            @Override
            public UserAction map(UserAction value) throws Exception {

                int newPrice = value.getProductPrice() * 8;
                return new UserAction(value.getUserID(), value.getEventTime(), value.getEventType(), value.getProductID(), newPrice);
            }
        });

        // 输出: 输出到控制台
        // UserAction(userID=userID1, eventTime=1293984002, eventType=click, productID=productID1, productPrice=80)
        // UserAction(userID=userID1, eventTime=1293984000, eventType=click, productID=productID1, productPrice=80)
        // UserAction(userID=userID2, eventTime=1293984001, eventType=browse, productID=productID2, productPrice=64)
        result.print();

        env.execute();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
FlatMap [DataStream->DataStream]
FlatMap: 一行变零到多行。如下,将一个句子(一行)分割成多个单词(多行)。

package com.bigdata.flink.dataStreamFlatMapOperator;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

/**
 * Summary:
 *      FlatMap: 一行变任意行(0~多行)
 */
public class DataStreamFlatMapOperator {
  public static void main(String[] args) throws Exception{
      StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

      // 输入: 英文电影台词
      DataStreamSource<String> source = env
              .fromElements(
                      "You jump I jump",
                      "Life was like a box of chocolates"
              );

      // 转换: 将包含chocolates的句子转换为每行一个单词
      SingleOutputStreamOperator<String> result = source.flatMap(new FlatMapFunction<String, String>() {
          @Override
          public void flatMap(String value, Collector<String> out) throws Exception {
              if(value.contains("chocolates")){
                  String[] words = value.split(" ");
                  for (String word : words) {
                      out.collect(word);
                  }
              }
          }
      });

      // 输出: 输出到控制台
      // Life
      // was
      // like
      // a
      // box
      // of
      // chocolates
      result.print();

      env.execute();
  }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Filter [DataStream->DataStream]
Filter: 过滤出需要的数据

package com.bigdata.flink.dataStreamFilterOperator;

import com.bigdata.flink.beans.UserAction;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.Arrays;

/**
 * Summary:
 *      Fliter: 过滤出需要的数据
 */
public class DataStreamFilterOperator {
    public static void main(String[] args) throws Exception{

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 输入: 用户行为。某个用户在某个时刻点击或浏览了某个商品,以及商品的价格。
        DataStreamSource<UserAction> source = env.fromCollection(Arrays.asList(
                new UserAction("userID1", 1293984000, "click", "productID1", 10),
                new UserAction("userID2", 1293984001, "browse", "productID2", 8),
                new UserAction("userID1", 1293984002, "click", "productID1", 10)
        ));

        // 过滤: 过滤出用户ID为userID1的用户行为
        SingleOutputStreamOperator<UserAction> result = source.filter(new FilterFunction<UserAction>() {
            @Override
            public boolean filter(UserAction value) throws Exception {
                return value.getUserID().equals("userID1");
            }
        });

        // 输出: 输出到控制台
        // UserAction(userID=userID1, eventTime=1293984002, eventType=click, productID=productID1, productPrice=10)
        // UserAction(userID=userID1, eventTime=1293984000, eventType=click, productID=productID1, productPrice=10)
        result.print();

        env.execute();

    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
KeyBy [DataStream->KeyedStream]
KeyBy: 按指定的Key对数据重分区。将同一Key的数据放到同一个分区。

注意:

分区结果和KeyBy下游算子的并行度强相关。如下游算子只有一个并行度,不管怎么分,都会分到一起。
对于POJO类型,KeyBy可以通过keyBy(fieldName)指定字段进行分区。
对于Tuple类型,KeyBy可以通过keyBy(fieldPosition)指定字段进行分区。
对于一般类型,如上, KeyBy可以通过keyBy(new KeySelector {...})指定字段进行分区。
package com.bigdata.flink.dataStreamKeyByOperator;

import com.bigdata.flink.beans.UserAction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.Arrays;

/**
 * Summary:
 *      KeyBy: 按指定的Key对数据重分区。将同一Key的数据放到同一个分区。
 */
public class DataStreamKeyByOperator {
    public static void main(String[] args) throws Exception{

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 输入: 用户行为。某个用户在某个时刻点击或浏览了某个商品,以及商品的价格。
        DataStreamSource<UserAction> source = env.fromCollection(Arrays.asList(
                new UserAction("userID1", 1293984000, "click", "productID1", 10),
                new UserAction("userID2", 1293984001, "browse", "productID2", 8),
                new UserAction("userID1", 1293984002, "click", "productID1", 10)
        ));

        // 转换: 按指定的Key(这里,用户ID)对数据重分区,将相同Key(用户ID)的数据分到同一个分区
        KeyedStream<UserAction, String> result = source.keyBy(new KeySelector<UserAction, String>() {
            @Override
            public String getKey(UserAction value) throws Exception {
                return value.getUserID();
            }
        });

        // 输出: 输出到控制台
        //3> UserAction(userID=userID1, eventTime=1293984000, eventType=click, productID=productID1, productPrice=10)
        //3> UserAction(userID=userID1, eventTime=1293984002, eventType=click, productID=productID1, productPrice=10)
        //2> UserAction(userID=userID2, eventTime=1293984001, eventType=browse, productID=productID2, productPrice=8)
        result.print().setParallelism(3);

        env.execute();

    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Reduce [KeyedStream->DataStream]
Reduce: 基于ReduceFunction进行滚动聚合,并向下游算子输出每次滚动聚合后的结果。
注意: Reduce会输出每一次滚动聚合的结果。

package com.bigdata.flink.dataStreamReduceOperator;

import com.bigdata.flink.beans.UserAction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.Arrays;

/**
 * Summary:
 *     Reduce: 基于ReduceFunction进行滚动聚合,并向下游算子输出每次滚动聚合后的结果。
 */
public class DataStreamReduceOperator {
    public static void main(String[] args) throws Exception{

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 输入: 用户行为。某个用户在某个时刻点击或浏览了某个商品,以及商品的价格。
        DataStreamSource<UserAction> source = env.fromCollection(Arrays.asList(
                new UserAction("userID1", 1293984000, "click", "productID1", 10),
                new UserAction("userID2", 1293984001, "browse", "productID2", 8),
                new UserAction("userID2", 1293984002, "browse", "productID2", 8),
                new UserAction("userID2", 1293984003, "browse", "productID2", 8),
                new UserAction("userID1", 1293984002, "click", "productID1", 10),
                new UserAction("userID1", 1293984003, "click", "productID3", 10),
                new UserAction("userID1", 1293984004, "click", "productID1", 10)
        ));

        // 转换: KeyBy对数据重分区
        KeyedStream<UserAction, String> keyedStream = source.keyBy(new KeySelector<UserAction, String>() {
            @Override
            public String getKey(UserAction value) throws Exception {
                return value.getUserID();
            }
        });

        // 转换: Reduce滚动聚合。这里,滚动聚合每个用户对应的商品总价格。
        SingleOutputStreamOperator<UserAction> result = keyedStream.reduce(new ReduceFunction<UserAction>() {
            @Override
            public UserAction reduce(UserAction value1, UserAction value2) throws Exception {
                int newProductPrice = value1.getProductPrice() + value2.getProductPrice();
                return new UserAction(value1.getUserID(), -1, "", "", newProductPrice);
            }
        });

        // 输出: 将每次滚动聚合后的结果输出到控制台。
        //3> UserAction(userID=userID2, eventTime=1293984001, eventType=browse, productID=productID2, productPrice=8)
        //3> UserAction(userID=userID2, eventTime=-1, eventType=, productID=, productPrice=16)
        //3> UserAction(userID=userID2, eventTime=-1, eventType=, productID=, productPrice=24)
        //4> UserAction(userID=userID1, eventTime=1293984000, eventType=click, productID=productID1, productPrice=10)
        //4> UserAction(userID=userID1, eventTime=-1, eventType=, productID=, productPrice=20)
        //4> UserAction(userID=userID1, eventTime=-1, eventType=, productID=, productPrice=30)
        //4> UserAction(userID=userID1, eventTime=-1, eventType=, productID=, productPrice=40)
        result.print();

        env.execute();
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
Fold [KeyedStream->DataStream]
基于初始值和FoldFunction进行滚动折叠(Fold),并向下游算子输出每次滚动折叠后的结果。
注意: Fold会输出每一次滚动折叠的结果。

package com.bigdata.flink.dataStreamFoldOperator;

import com.bigdata.flink.beans.UserAction;
import org.apache.flink.api.common.functions.FoldFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.Arrays;

/**
 * Summary:
 *      Fold: 基于初始值和自定义的FoldFunction滚动折叠后发出新值
 */
public class DataStreamFoldOperator {
    public static void main(String[] args) throws Exception{

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 输入: 用户行为。某个用户在某个时刻点击或浏览了某个商品,以及商品的价格。
        DataStreamSource<UserAction> source = env.fromCollection(Arrays.asList(
                new UserAction("userID1", 1293984000, "click", "productID1", 10),
                new UserAction("userID2", 1293984001, "browse", "productID2", 8),
                new UserAction("userID2", 1293984002, "browse", "productID2", 8),
                new UserAction("userID2", 1293984003, "browse", "productID2", 8),
                new UserAction("userID1", 1293984002, "click", "productID1", 10),
                new UserAction("userID1", 1293984003, "click", "productID3", 10),
                new UserAction("userID1", 1293984004, "click", "productID1", 10)
        ));

        // 转换: KeyBy对数据重分区
        KeyedStream<UserAction, String> keyedStream = source.keyBy(new KeySelector<UserAction, String>() {
            @Override
            public String getKey(UserAction value) throws Exception {
                return value.getUserID();
            }
        });

        // 转换: Fold 基于初始值和FoldFunction滚动折叠
        SingleOutputStreamOperator<String> result = keyedStream.fold("浏览的商品及价格:", new FoldFunction<UserAction, String>() {
            @Override
            public String fold(String accumulator, UserAction value) throws Exception {
                if(accumulator.startsWith("userID")){
                    return accumulator + " -> " + value.getProductID()+":"+value.getProductPrice();
                }else {
                    return value.getUserID()+" " +accumulator + " -> " + value.getProductID()+":"+value.getProductPrice();
                }
            }
        });

        // 输出: 输出到控制台
        // 每一条数据都会触发计算并输出
        // userID1 浏览的商品及价格: -> productID1:10
        // userID1 浏览的商品及价格: -> productID1:10 -> productID1:10
        // userID1 浏览的商品及价格: -> productID1:10 -> productID1:10 -> productID3:10
        // userID1 浏览的商品及价格: -> productID1:10 -> productID1:10 -> productID3:10 -> productID1:10
        // userID2 浏览的商品及价格: -> productID2:8
        // userID2 浏览的商品及价格: -> productID2:8 -> productID2:8
        // userID2 浏览的商品及价格: -> productID2:8 -> productID2:8 -> productID2:8
        result.print();

        env.execute();

    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
Aggregate [KeyedStream->DataStream]
Aggregate 对KeyedStream按指定字段滚动聚合并输出每一次滚动聚合后的结果。默认的聚合函数有:sum、min、minBy、max、mabBy。

注意:

max(field)与maxBy(field)的区别: maxBy返回field最大的那条数据;而max则是将最大的field的值赋值给第一条数据并返回第一条数据。同理,min与minBy。
Aggregate聚合算子会滚动输出每一次聚合后的结果。
package com.bigdata.flink.dataStreamAggregateOperator;

import com.bigdata.flink.beans.UserActionLogPOJO;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.ArrayList;

/**
 * Summary:
 *     Aggregate: min()、minBy()、max()、maxBy() 滚动聚合并输出每次滚动聚合后的结果
 */
public class DataStreamAggregateOperator {
    public static void main(String[] args) throws Exception{

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 输入: 用户行为。某个用户在某个时刻点击或浏览了某个商品,以及商品的价格。
        ArrayList<UserActionLogPOJO> userActionLogs = new ArrayList<>();
        UserActionLogPOJO userActionLog1 = new UserActionLogPOJO();
        userActionLog1.setUserID("userID1");
        userActionLog1.setProductID("productID3");
        userActionLog1.setProductPrice(10);
        userActionLogs.add(userActionLog1);

        UserActionLogPOJO userActionLog2 = new UserActionLogPOJO();
        userActionLog2.setUserID("userID2");
        userActionLog2.setProductPrice(10);
        userActionLogs.add(userActionLog2);

        UserActionLogPOJO userActionLog3 = new UserActionLogPOJO();
        userActionLog3.setUserID("userID1");
        userActionLog3.setProductID("productID5");
        userActionLog3.setProductPrice(30);
        userActionLogs.add(userActionLog3);

        DataStreamSource<UserActionLogPOJO> source = env.fromCollection(userActionLogs);

        // 转换: KeyBy对数据重分区
        // 这里, UserActionLog是POJO类型,也可通过keyBy("userID")进行分区
        KeyedStream<UserActionLogPOJO, String> keyedStream = source.keyBy(new KeySelector<UserActionLogPOJO, String>() {
            @Override
            public String getKey(UserActionLogPOJO value) throws Exception {
                return value.getUserID();
            }
        });

        // 转换: Aggregate并输出
        // 滚动求和并输出
        //keyedStream.sum("productPrice").print();
        // 滚动求最大值并输出
        keyedStream.max("productPrice").print();
        // 滚动求最大值并输出
        keyedStream.maxBy("productPrice").print();
        // 滚动求最小值并输出
        //keyedStream.min("productPrice").print();
        // 滚动求最小值并输出
        //keyedStream.minBy("productPrice").print();

        env.execute();
    }
}
————————————————
版权声明:本文为CSDN博主「wangpei1949」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/wangpei1949/article/details/101625394

### 回答1: 这些都是 Flink 中的数据转换操作,它们可以对数据流进行聚合、合并、转换等操作。其中 reducefold 都是对数据流中的元素进行聚合操作,不同之处在于 reduce 是基于两个元素进行聚合,而 fold 是基于一个初始值和一个元素进行聚合。Aggregate 则是对数据流中的元素进行合并操作,可以使用预定义的聚合函数或自定义聚合函数。Apply 则是对数据流中的每个元素进行转换操作,可以使用预定义的函数或自定义函数。 ### 回答2: Flink是一个分布式大数据处理框架,提供了多种操作函数来对数据进行处理。其中reduceaggregatefold和apply都是常用的操作函数。 1. Reduce函数(缩减函数):reduce函数用于将输入的多个元素进行聚合操作,返回一个单一的结果。它是一个折叠操作,将每个输入元素依次传递给聚合函数,产生一个累积的结果。这个函数通常用于对数据流中的元素进行求和、求平均、求最大值等简单的聚合操作。 2. Aggregate函数(累计函数):aggregate函数与reduce函数类似,也是用于将输入的多个元素进行聚合操作。不同之处在于,aggregate函数可以接收一个初始值,对输入元素进行累加操作,并将结果返回。通常情况下,aggregate函数用于实现更加复杂的聚合操作,例如计算每个窗口的平均值、最大值等。 3. Fold函数(折叠函数):fold函数是reduce函数的一种特殊形式,它将输入的元素进行聚合操作,并返回一个和输入元素类型相同的结果。与reduce函数不同的是,fold函数接收一个初始值,将其作为第一个输入元素,然后依次将输入元素进行折叠操作,最终返回结果。通常情况下,fold函数用于将数据流中的元素进行聚合,并返回一个新的结果。 4. Apply函数(应用函数):apply函数是一个通用的操作函数,它可以接收任意的输入和输出类型,并对数据进行处理。apply函数通常用于实现自定义的数据转换、筛选或其他复杂的处理逻辑。我们可以在apply函数中编写自己的业务逻辑,对数据流进行任意的处理操作。 总而言之,reduceaggregatefold和apply函数都是用于对Flink数据流进行处理和聚合的常用操作函数,它们在不同的场景下有不同的应用和效果。 ### 回答3: Flink是一个用于大规模流数据处理和批处理的流行开源框架。在Flink中,reduceaggregatefold和apply是用于数据处理的操作函数。 1. Reduce(规约):Reduce函数用于合并流数据集中的元素,将多个元素聚合成一个元素。Reduce操作将应用到每个流数据集的每个元素上,并将结果进行合并,返回一个新的流数据集。例如,可以使用Reduce函数来计算流数据集中的元素的总和或最大值。 2. Aggregate(聚合):Aggregate函数类似于Reduce函数,但是它可以进行更复杂的聚合操作。Aggregate操作将一个输入数据集聚合为一个或多个结果,并可以带有中间状态。它可以用于实现统计操作,例如计算平均值或中位数。 3. Fold(折叠):Fold函数与Reduce函数类似,它也是将多个元素聚合成一个元素。但是与Reduce函数不同的是,Fold函数可以指定一个初始值,并对每个元素应用聚合操作。Fold函数将应用到每个流数据集的每个元素上,并将结果进行合并,返回一个新的流数据集。例如,可以使用Fold函数来计算流数据集中元素的累加和。 4. Apply(应用):Apply函数用于在流数据集上应用用户自定义的函数。它可以接受一个或多个输入流数据集,并生成一个或多个输出流数据集。Apply函数在流数据集上执行指定的用户定义的操作,可以是映射、过滤、转换等。通过Apply函数,用户可以根据自己的需求对流数据进行灵活的处理和操作。 总结:flink中的reduceaggregatefold和apply是用于对流数据集进行处理和操作的函数。它们分别用于合并、聚合、折叠和应用操作,可以帮助用户实现各种数据处理需求。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值