一
排列:n个元素中取r个按顺序排成一列,称为从n中取r的排列,其排列的方案数以P(n,r)表示.
模型:从n个中取r个排列的典型模型是把n个有标志的球取r个放到r个有区别的盒子里.
举例:例如从(A,B,C)中取2个为一组排列,可有
(A,B), (A,C), (B,A) , (B,C), (C,A), (C,B) 六个组,故P(3,2)=6.
举例:
P(5,3) = 5*4*3 = 5!/2!
全排列: n! =1*2*3…*n
特别: 0!=1
举例:
1、 C(5,3) = 5*4*3/3! =10
即: C(5,3)=P(5,3)/3!
2、请自行理解为什么它们的值会相等 : C(5,3)= C(5,2)
即: C(n,m)=C(n,n-m)
二
组合的递归定义
杨辉三角