题目描述
小可可的学校信息组总共有n 个队员,每个人都有一个实力值a[i]a[i]。现在,一年一度的编程大赛就要到了,小可可的学校获得了若干个参赛名额,教练决定把学校信息组的nn 个队员分成若干个小组去参加这场比赛。
但是每个队员都不会愿意与实力跟自己过于悬殊的队员组队,于是要求分成的每个小组的队员实力值连续,同时,一个队不需要两个实力相同的选手。举个例子:[1, 2, 3, 4, 5][1,2,3,4,5]是合法的分组方案,因为实力值连续;[1, 2, 3, 5][1,2,3,5]不是合法的分组方案,因为实力值不连续;[0, 1, 1, 2][0,1,1,2]同样不是合法的分组方案,因为出现了两个实力值为1 的选手。
如果有小组内人数太少,就会因为时间不够而无法获得高分,于是小可可想让你给出一个合法的分组方案,满足所有人都恰好分到一个小组,使得人数最少的组人数最多,输出人数最少的组人数的最大值。
注意:实力值可能是负数,分组的数量没有限制。
输入格式
输入有两行:
第一行一个正整数n,表示队员数量。
第二行有n 个整数,第i 个整数a[i]表示第i 个队员的实力。
输出格式
输出一行,包括一个正整数,表示人数最少的组的人数最大值。
输入输出样例
输入 #1复制
7 4 5 2 3 -4 -3 -5
输出 #1复制
3
说明/提示
【样例解释】 分为2 组,一组的队员实力值是{4, 5, 2, 3}4,5,2,3,一组是{-4, -3, -5}−4,−3,−5,其中最小的组人数为3,可以发现没有比3 更优的分法了。
【数据范围】
对于100%的数据满足:1≤n≤1000001≤n≤100000,|a[i]|≤10^9∣a[i]∣≤109。
本题共10 个测试点,编号为1~10,每个测试点额外保证如下:
1~2 n≤6, 1≤a[i]≤100n≤6,1≤a[i]≤100
3~4 n≤1000, 1≤a[i]≤10^5n≤1000,1≤a[i]≤105 且a[i]互不相同
5~6 n≤100000, a[i]n≤100000,a[i]互不相同
7~8 n≤100000, 1≤a[i]≤10^5n≤100000,1≤a[i]≤105
9~10 n≤100000, |a[i]|≤10^9n≤100000,∣a[i]∣≤109
上代码:
#include<cstdio>
#include<map>
std::map<int,int>m;
typedef std::map<int,int>::iterator it;
int main(){
int n,ans=0x3f3f3f3f;
scanf("%d",&n);
for(int i=0;i<n;++i){
int t;
scanf("%d",&t);
++m[t];
//记录图像。
}
while(!m.empty()){
it i=m.begin(),j=m.begin();
--(*i).second;
int t=1;
for(++j;j!=m.end()&&(*j).first==(*i).first+1&&(*j).second>(*i).second;++i,++j){
++t;
--(*j).second;
}
//若 i,j 所对应的能力值是连续的,且 i 对应的那一列高度不高于 j,则继续画线。
i=m.begin();
while(i!=m.end()&&(*i).second==0){
m.erase((*i++).first);
}
//高度降为 0 后直接删除,便于计算。
if(t<ans){
ans=t;
}
//记录答案。
}
printf("%d",ans);
return 0;
}