合并两个有序链表

题目:合并两个有序链表
题目描述:
将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。
示例:
输入:1->2->4, 1->3->4
输出:1->1->2->3->4->4

public class MergeOrderedList {
public static void main(String[] args) {
Node node1 = new Node(1);
Node node2 = new Node(2);
Node node3 = new Node(4);

    Node node4 = new Node(1);
    Node node5 = new Node(3);
    Node node6 = new Node(4);

    node1.setNext(node2);
    node2.setNext(node3);

    node4.setNext(node5);
    node5.setNext(node6);

    Node newSort = merge(node1,node4);
    System.out.println("合并后的排序是:");
    while(newSort !=null){
        System.out.print(newSort.getData()+" ");
        newSort = newSort.getNext();
    }
}

private static Node merge(Node node1, Node node2){
    Node head = new Node(node1.data);  //让第一个链表的节为头节点
    Node temp = head;  //将头结点赋给临时变量temp
    node1 = node1.next;  //node1指向下一个节点
    while(true){       //循环
        if (node1 == null && node2 == null){
            break;
        }else if(node1 == null){  //直接到另一个链表的当前表头
            temp.next = node2;
            break;
        }else if (node2 == null){
            temp .next = node1;
        }else {
            if (node1.data <= node2.data){    //选出较小的值作为新链表的头结点之后的下一节点
                temp.next = new Node(node1.data);
                temp = temp.next;
                node1 = node1.next;
            }else{
                temp.next = new Node(node2.data);
                temp = temp.next;
                node2 = node2.next;
            }
        }
    }
    return head;

    /*//判断合并的链表是否为空
    if (node1 == null && node2 == null){
        throw new RuntimeException("要合并的两条链表都为空");
    }
    //一条链表为空。直接返回另一条链表
    if (node1 == null){
        return node2;
    }
    if (node2 == null){
        return  node1;
    }
    //合并后的新链表的头结点
    Node head = null;
    //选出最小值作为合并后的新链表的头结点
    if (node1.getData() <= node2.getData()){
        head = node1;
        //后移结点
        node1 = node1.getNext();
    }else{
        head = node2;
        //后移结点
        node2 = node2.getNext();
    }
    //临时链表,用来链接合并链表的结点
    Node temp = head;
    while (node1 != null && node2 != null){
        if (node1.getData() <= node2.getData() ){
            temp.setNext(node1);
            //后移结点
            node1 = node1.getNext();
        }else{
            temp.setNext(node2);
            //后移结点
            node2 = node2.getNext();
        }
        //临时变量,用来链接合并链表的结点
        temp = temp.getNext();
    }
    if (node1 == null){
        temp.setNext(node2);
    }
    if (node2 == null){
        temp.setNext(temp);
    }
    return head;*/
}

static class Node implements Serializable{
    private int data;
    private Node next;

    public Node(int data) {
        this.data = data;
    }

    public int getData() {
        return data;
    }

    public void setData(int data) {
        this.data = data;
    }

    public Node getNext() {
        return next;
    }

    public void setNext(Node next) {
        this.next = next;
    }
}

}

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值