盛最多水的容器

给定n个非负整数,表示坐标点,找到两条线构成的最大容水量。初始以首尾元素计算最大面积,使用双指针i和j,分别指向首尾,循环计算面积并更新最大值。
摘要由CSDN通过智能技术生成

题目:盛最多水的容器
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。
在这里插入图片描述

public class MaxArea {
    public static void main(String[] args) {
        int[] height = {7,4,8,3,8,9};
        int result = maxArea(height);
        System.out.println(result);
    }
    public static int maxArea(int[] height){
        int i = 0;            //数组的第一个元素
        int j = height.length-1;  //数组的最后一个元素
        int are = 0;  //最开始的面积
        while(i<j){
            int min = Math.min(height[i],height[j]);
            are = Math.max(are,min * (j-i));  //更新面积
            if (height[i]<height[j]){
                i++;
            }else{
                j--;
            }
        }
        return are;
    }
}

/**

  • 思路:首先以数组中的第一个元素和最后一个元素作为两边,计算面积最大值的初始值,设置两个指针i和j,首指针i指向数组中的第一个元素,尾指针j指向数组中的最后一个元素。
  • 当首指针i小于尾指针j时,一直循环计算它的面积。如果计算所得面积大于之前计算的面积最大值,就更新面积最大值,
    */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值