lzzdflg
码龄8年
关注
提问 私信
  • 博客:428,670
    428,670
    总访问量
  • 15
    原创
  • 2,132,585
    排名
  • 89
    粉丝
  • 0
    铁粉

个人简介:川大图形图像计算机视觉硕士

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-05-06
博客简介:

lzzdflg的博客

查看详细资料
个人成就
  • 获得207次点赞
  • 内容获得32次评论
  • 获得1,014次收藏
创作历程
  • 1篇
    2020年
  • 5篇
    2019年
  • 2篇
    2018年
  • 7篇
    2017年
成就勋章
TA的专栏
  • 图像处理
    4篇
  • 机器学习
    5篇
  • 数理统计
    3篇
  • 傅里叶变换
    1篇
  • 统计学习方法
    3篇
  • 算法
    1篇
  • 线性代数笔记
    1篇
  • Office
    1篇
  • CNN
    1篇
  • CUDA
    1篇
  • 摄像机
    2篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

visio 科学图形包

发布资源 2020.12.31 ·
rar

ARPACK.rar

发布资源 2020.06.16 ·
rar

Build ARPACK x64 with MinGW

编译生成ARPACK x64位试了几乎网上所有的资料,最后试出来如何生成ARPACK x64用到的工具MSYS2 下载地址MinGW64位 下载地址ARPACK 下载地址如何改变文本的样式强调文本 强调文本加粗文本 加粗文本标记文本删除文本引用文本H2O is是液体。210 运算结果是 1024.链接: link.居中的图片: 居中并且带尺寸的图片: 当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。如何插入一段漂亮的代码片去博客设置页面,选择一款你喜欢的代码
原创
发布博客 2020.06.15 ·
818 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

海康IPC SDK直接解码 C2365 "GetConsoleWindow":重定义 ; 以前的定义是"函数"

海康IPCSDK中直接解码模式在vs中会产生以下报错C2659 "=":作为左操作符C2365 "GetConsoleWindow":重定义 ;以前的定义是"函数"函数问题,源码中调用方法为VC,直接对其进行修改#include <stdio.h>#include <iostream>#include "Windows.h"#include "H...
原创
发布博客 2019.07.17 ·
2282 阅读 ·
2 点赞 ·
7 评论 ·
6 收藏

海康摄像头 NET_DVR_ALLOC_RESOURCE_ERROR 41 SDK资源分配错误

海康摄像头可通过NET_DVR_Init()初始化,在NET_DVR_Login_V40时报错出现错误为NET_DVR_ALLOC_RESOURCE_ERROR 41 SDK资源分配错误解决方案:将海康SDK中库目录与头文件目录中所有内容,拷贝到项目的程序运行目录下(就是debug目录下有程序的exe)...
原创
发布博客 2019.07.17 ·
6041 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

VS使用CUDA对于cooperative_groups.h文件无法识别原由

本人在使用VS2019调用CUDA给予的样例代码时,产生了以下错误。对于命名空间cooperative_groups无法识别,查找cooperative_groups.h发现其内容因VSIntellisense无法识别其__CUDACC__导致主文件显示错误。在官网文档中对于CUDA的运行方式做了如下阐述,CUDA应用程序的源文件由传统主机代码和针对设备(GPU)代码构成,CUDA...
原创
发布博客 2019.07.10 ·
1381 阅读 ·
0 点赞 ·
4 评论 ·
3 收藏

sigmoid作为激活函数时使用交叉熵损失函数cross-entropy原由

在大多数使用sigmoid作为激活函数时,神经网络中通过使用交叉熵损失函数cross-entropy可使网络参数能够快速的从错误中学习问题,使梯度下降中权值w以及偏秩b的下降速率得以提升,即可较为快速的得出网络结果。在下方图示中,我们给出神经网络中对于使用sigmoid作为激活函数,在使用二次代价函数(quadraticcost)时产生的一种下降速率缓慢的数据图像。对于上图两神经网络...
原创
发布博客 2019.06.24 ·
8528 阅读 ·
2 点赞 ·
0 评论 ·
12 收藏

Word开启自动加载启动项

Word中加载MathType时,每次开启都需要配置在选项->加载项中重新配置一遍。关于自动加载启动项步骤如下:1.在 Word 2010、 2013年或 2016 中,选择文件>选项>高级。在 Word 2007 中,单击Microsoft Office 按钮,,然后选择Word 选项>高级。2.向下滚动到常规,,然后单击文件位置。3.请注意启动列...
原创
发布博客 2019.05.25 ·
7577 阅读 ·
7 点赞 ·
5 评论 ·
14 收藏

MIT 线性代数笔记 第一、二课

因为目前研究方向为3维重建,所以需要补一些线代知识,该笔记主要是给自己看的,而且一般记录我不太熟悉的向量有关的知识...一般线代常识性东西我就不写了....第一课在MIT老师对于线性代数中AX=b的理解中,将矩阵乘以向量分为两种形式,一种行图像,一种列图像。二维:行图像:对于函数行图像将每一行视为一条直线,对于其中的x,y视为每一条直线上的点,求出x,y为两直线的交点。...
原创
发布博客 2018.12.06 ·
296 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

HTTP 错误 404.5 - Not Found

开发过程中遇到以上问题该问题原因为当前文件被禁止访问,有可能在某个禁止路径内,因此删除禁止路径即可。后通过搜索发现类似404.7-Web 服务器上的请求筛选被配置为拒绝该请求,因为内容长度超过配置的值参照其解决方法第一种在web.config中修改&lt;denyUrlSequences&gt;的设置&lt;system.webServer&gt;&lt;securi...
原创
发布博客 2018.11.12 ·
1418 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

俄罗斯方块

发布资源 2018.01.04 ·
zip

Deep Learning 中文版

发布资源 2018.01.04 ·
zip

html网页设计大作业

发布资源 2018.01.04 ·
zip

最大似然估计(MadTurtle)

似然函数似然函数是给定联合样本值x下关于未知参数θ的函数: 等式右边表明在给定θ时,x出现的可能性大小。 类似于当x∈X时 如果X时离散的随机变量 ,即代表了在参数θ下随机向量X取到x的可能性,也可以称为概率质量函数。 当X为连续随机变量时,那么f(x|θ)为给定θ下x的概率密度函数。等式左边表明在给定样本x时,对于不同的θ,那个θ可以使x出现的可能性最大。 (这里的参数θ可以参照后面极
原创
发布博客 2017.12.26 ·
530 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

决策树CART与ID3,C4.5联系与区别

CART与ID3和C4.5相同都由特征选择,树的生成,剪枝组成。但ID3和C4.5用于分类,CART可用于分类与回归。CART是在给定输入随机变量X条件下输出随机变量Y的条件概率分布,与ID3和C4.5的决策树所不同的是,ID3和C4.5生成的决策树可以是多叉的,每个节点下的叉树由该节点特征的取值种类而定,比如特征年龄分为(青年,中年,老年),那么改节点下可分为3叉。而CART为假设决策树为二叉树,
原创
发布博客 2017.12.02 ·
15608 阅读 ·
3 点赞 ·
0 评论 ·
31 收藏

感知机的对偶形式

首先声明感知机的对偶形式与原始形式并没有多大的区别,运算的过程都是一样的,但通过对偶形式会事先计算好一些步骤的结果并存储到Gray矩阵中,因此可以加快一些运算速度,数据越多节省的计算次数就越多,因此比原始形式更加的优化。 首先我们介绍一下感知机的原始形式,之后与其对比。感知机感知机是二类分类的线性分类模型,输入为实例的特征向量,输出为实例的类别,分别去+1和-1两值。感知机对应与输入空间中将实例划
原创
发布博客 2017.11.09 ·
10330 阅读 ·
18 点赞 ·
4 评论 ·
68 收藏

傅里叶变换三性质

既然一个函数通过傅里叶变换可以得到另外的函数,那么通过对原函数的变换,其傅里叶变换后函数是否也有特殊的变换性质?时延性 f(t)为原函数,F(S)为经过傅里叶变换后的频域函数,b为时移的距离 那么这个?是什么。 意味着时移对应着频域上的相移(相位)尺度变化 f(t)为原函数,F(S)为经过傅里叶变换后的频域函数,a为尺度变换的幅度的 那么这个?是什么。 当a>0时, 用
原创
发布博客 2017.11.03 ·
2643 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

马氏距离

马氏距离是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。 对于一个均值为,协方差矩阵为Σ的多变量矢量,其马氏距离为马氏距
原创
发布博客 2017.10.29 ·
1402 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

卷积

函数卷积的定义: 卷积是分析数学中一种重要的运算。 设:f(x),g(x)是R1上的两个可积函数,作积分:可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。以图像的方式理解:(先指出函数的表示这里f(x)以f,g(x)以g代替,g符号代表傅里叶变换,like gg(x)意味着函数
原创
发布博客 2017.10.26 ·
1000 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

傅里叶变换概念及公式推导

傅里叶变换傅里叶变换的目的是可将时域(即时间域)上的信号转变为频域(即频率域)上的信号,随着域的不同,对同一个事物的了解角度也就随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。傅里叶变换公式: (w代表频率,t代表时间,e^-iwt为复变函数) 傅里叶变换认为一个周期函数(信号)包含多个频率分量,任意函数(信号)f(t)可通过多个周期函数(基函数)相加而合成。 从物理角度
原创
发布博客 2017.10.16 ·
365197 阅读 ·
169 点赞 ·
11 评论 ·
818 收藏
加载更多