【AI系统】分布式通信与 NVLink

分布式通信与 NVLink

在进入大模型时代后,大模型的发展已成为 AI 的核心,但训练大模型实际上是一项比较复杂的工作,因为它需要大量的 GPU 资源和较长的训练时间。

此外,由于单个 GPU 工作线程的内存有限,并且许多大模型的大小已经超出了单个 GPU 的范围。所以就需要实现跨多个 GPU 的模型训练,这种训练方式就涉及到了分布式通信和 NVLink。当谈及分布式通信和 NVLink 时,我们进入了一个引人入胜且不断演进的技术领域,本节我们将简单介绍分布式通信的原理和实现高效分布式通信背后的技术 NVLink 的演进。

分布式通信是指将计算机系统中的多个节点连接起来,使它们能够相互通信和协作,以完成共同的任务。而 NVLink 则是一种高速、低延迟的通信技术,通常用于连接 GPU 之间或连接 GPU 与其他设备之间,以实现高性能计算和数据传输。

分布式并行

当前深度学习进入了大模型时代,即 Foundation Models。大模型,顾名思义主打的就是“大”,主要包括以下几个方面:

  1. 数据规模大:大模型通常采用自监督学习方法,减少了数据标注,降低训练研发成本,而大量的数据又可以提高模型的泛化能力和性能。

  2. 参数规模大:随着模型参数规模的不断增大,模型可以更好地捕捉数据中的复杂关系和模式,有望进一步突破现有模型结构的精度局限。

  3. 算力需求大:大规模的数据和参数,使得模型无法在单机上运行和计算,这一方面要求计算硬件的不断进步,另一方面也要求 AI 框架具有分布式并行训练的能力。

所以说,为了解决上述问题我们需要引入分布式并行策略。

数据并行

数据并行(Data Parallel, DP)是一种常用的深度学习训练策略,它通过在多个 GPU 上分布数据来实现并行处理。在数据并行的框架下,每个 GPU(或称作工作单元)都会存储模型的完整副本,这样每个 GPU 都能独立地对其分配的数据子集进行前向和反向传播计算。

数据并行的工作流程:

  1. 参数同步:在开始训练之前,所有的工作单元同步模型参数,确保每个 GPU 的模型副本是相同的。

  2. 分配数据:训练数据被划分为多个批次,每个批次进一步被分割成多个子集,每个 GPU 负责处理一个数据子集。

  3. 独立计算梯度:每个 GPU 独立地对其数据子集进行前向传播和反向传播,计算出相应的梯度。

  4. 梯度聚合:计算完成后,所有工作单元的梯度需要被聚合起来。这通常通过网络通信来实现,比如使用 All-Reduce 算法,它允许在不同的 GPU 间高效地计算梯度的平均值。

  5. 更新参数:一旦梯度被平均,每个 GPU 使用这个平均梯度来更新其模型副本的参数。

  6. 重复过程:这个过程在每个数据批次上重复进行,直到模型在整个数据集上训练完成。

数据并行的优势和挑战:

数据并行可以允许训练过程水平扩展到更多的 GPU 上,从而加速训练。其优势是实现简单,而且可以灵活的调整工作单元的数量来适应可用的硬件资源,当前多种 AI 框架提供了内置支持。不过数据并行随着并行的 GPU 数量增加,需要存储更多的参数副本,这会导致显著的内存开销。此外,梯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值