为什么需要 AI 编译器
本文将通过探讨 AI 编译器的黄金年代以及传统编译器与 AI 编译器的区别等角度,来介绍为什么需要 AI 编译器。
AI 编译器黄金年代
图灵奖获得者 David Patterson 在 2019 年 5 月发表了一个名为“计算机架构新的黄金年代”的演讲,他通过回顾自 20 世纪 60 年代以来的计算机架构的发展,来介绍当前的难题与未来的机遇。他预测未来十年计算机架构领域将会迎来下一个黄金时代,就像 20 世纪 80 年代一样。
John Hennessy 和 David Patterson 是 2017 年图灵奖获得者,目前这两位学者都供职于谷歌,前者是谷歌母公司 Alphabet 的董事会主席,后者任谷歌杰出工程师,致力于研究机器学习和 AI 。他们更为人所知的就是共同完成的计算机系统结构学科「圣经」《计算机体系结构:量化研究方法》了。该讲座也是基于两人在 2019 年新发表的文章《计算机架构的新黄金时代》。
David Patterson 介绍了从最初诞生的复杂指令计算机到精简指令计算机,再从单核处理器到多核处理器的发展,再到如今随着 AI 的飞速发展,DSA(Domain-specific architectures)迅速崛起,比如 AI 芯片、GPU 芯片以及 NPU 芯片,这些都是 DSA。他认为高级、特定于领域的语言和体系结构,将为计算机架构师带来一个新的黄金时代。
类似的,LLVM 之父 Chris Lattner 在 2021 年 ASPLOS 会议的主题演讲中发表了名为“编译器的黄金时代”的演讲,主要分享了关于编译器的发展现状和未来、编程语言、加速器和摩尔定律失效论,并且讨论业内人士如何去协同创新,推动行业发展,实现处理器运行速度的大幅提升。
Chris 认为世界出现了越来越多的专属硬件,同时也出现了各种各样的应用。尽管现在硬件越来越多样,硬件生态迅速壮大,但软件还是很难充分利用它们来提高性能。而且如果软硬件协同不到位,性能就会受到巨大影响,那不止是 10%左右的浮动。
Chris Lattner,LLVM 课程的主要发起人与作者之一,Swift 语言的创始人,并于 2022 年 3 月离开 Swift 核心团队,Clang 编译器的作者。现为他共同创立的 AI 公司 Modular AI 的首席执行官
AI 领域正经历着硬件的爆发式增长,这为 AI 应用的创新和扩展提供了强大的动力。随着各种不同的 AI 硬件的快速涌现,我们正面临一个软件碎片化的时代。软件碎片化意味着需要为不同的 AI 硬件平台开发和维护多种版本的基础软件,这无疑增加了研发和运营的成本。
此外,AI 基础软件碎片化还可能导致用户体验的不一致,因为不同硬件上运行的基础软件可能在性能和功能上存在差异。这种不一致性不仅增加了用户的学习成本,也可能影响用户对品牌和产品的忠诚度。
最终,软件碎片化的问题还可能反噬硬件行业本身。如果硬件制造商无法提供兼容和优化良好的软件解决方案,那么他们在市场上的竞争力将受到削弱。用户可能会选择那些能够提供更好软件支持的硬件产品,就像截至到目前为止大部分研究者仍然大量地使用英伟达的 GPU,而不是 DSA 架构的 AI 芯片。
因此,硬件行业的参与者需要认识到 AI 基础软件碎片化的潜在风险,并采取措施来缓解这一问题。这可能包括开发更加通用和可移植的软件架构,或者与软件开发商合作,共同提供跨平台的解决方案。
否则随着各种不同 AI 硬件的爆发式增长,会逐渐导致基础软件的碎片化,这种碎片化的发展带来了巨大成本,也会反噬 AI 硬件行业。
回顾历史,自 90 年代以来,GCC 编译器的出现极大地解决了当时编译体系生态的碎片化问题,为软件开发带来了统一的标准和便利。随后,LLVM 的诞生进一步推动了整个编译器领域的发展,为不同硬件平台提供了强大的编译支持。
在硬件领域,不同的芯片厂商纷纷推出了自家的芯片。为了充分发挥这些芯片的性能,必须有与之相匹配的编译器,将高级语言转化为机器码&#