deeplearning.ai 课后习题第二课第一周,初始化、加惩罚項(梯度检查后加)

1、将下面的代码段保存成base_utils.py 文档,用于初始化和L2 惩罚以及dropout方法的文件

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy.io
import sklearn.datasets
import sklearn.linear_model
#%matplotlib inline

def load_data_cat():
    x_train_set = h5py.File('datasets/train_catvnoncat.h5','r')
    x_train = np.array(x_train_set['train_set_x'][:])
    y_train = np.array(x_train_set['train_set_y'][:])
    x_test_set  = h5py.File('datasets/test_catvnoncat.h5','r')
    x_test  = np.array(x_test_set['test_set_x'][:])
    y_test  = np.array(x_test_set['test_set_y'][:])

    num_px  = x_train.shape[1]
    x_train = x_train.reshape(-1,num_px*num_px*3).T
    x_test  = x_test.reshape(-1,num_px*num_px*3).T
    y_train = y_train.reshape(1,-1)
    y_test  = y_test.reshape(1,-1)
    label_names = np.array(x_test_set['list_classes'][:])
    x_train = x_train / 255.0
    x_test  = x_test / 255.0
    return  x_train,x_test,y_train,y_test,label_names
def load_2D_dataset():

    data = scipy.io.loadmat('datasets/data.mat')
    x_train = data['X'].T
    y_train = data['y'].T
    x_test  = data['Xval'].T
    y_test  = data['yval'].T
    plt.figure(1)
    plt.scatter(x_train[0, :], x_train[1, :], c=y_train, s=40, cmap=plt.cm.Spectral);
    plt.show()
    return x_train,x_test,y_train,y_test

def load_data():
    from sklearn.datasets import make_circles
    np.random.seed(1)
    x_train,y_train = make_circles(n_samples=300, shuffle=True,noise = 0.05,factor=0.8)
    np.random.seed(2)
    x_test,y_test   = make_circles(n_samples=100,shuffle=True,noise=0.05,factor=0.8)
    #visualize data
    plt.scatter(x_train[:,0],x_train[:,1],c=y_train,s=40,cmap = plt.cm.Spectral)
    x_train = x_train.T
    y_train = y_train.reshape(1,-1)
    x_test  = x_test.T
    y_test  = y_test.reshape(1,-1)
    return x_train,x_test,y_train,y_test

def plot_decision_boundary(model,X,Y):
    '''
    Plot the decision boundary
    '''
    x_min,x_max = X[0,:].min()-1.0,X[0,:].max()+1.0
    y_min,y_max = X[1,:].min()-1.0,X[1,:].max()+1.0
    h = 0.01
    xx,yy = np.meshgrid(np.arange(x_min,x_max,h),np.arange(y_min,y_max,h))
    z = model(np.c_[xx.ravel(),yy.ravel()].T)
    z = z.reshape(xx.shape)
    plt.contourf(xx,yy,z,cmap=plt.cm.Spectral)
    plt.xlabel('feature 1')
    plt.ylabel('feature 2')
    plt.xlim([-2.0,2.0])
    plt.ylim([-2.0,2.0])
    plt.scatter(X[0,:],X[1,:],c=Y,cmap=plt.cm.Spectral)
    plt.show()

def model_pred(X,parameters,activation_list):
    '''
    This function used to predict the used parameters
    '''
    n_layers = len(activation_list)
    m_samples = X.shape[1]
    caches = []
    for i in range(n_layers):
        cache_temp = {}
        if (i == 0):
            cache_temp['Z'] = X
            cache_temp['A'] = X
            caches.append(cache_temp)
        else:
            cache_temp['Z'] = np.random.randn(parameters[i]['b'].shape[0],m_samples)
            cache_temp['A'] = np.random.randn(parameters[i]['b'].shape[0],m_samples)
            caches.append(cache_temp)
    caches = n_layers_forward(parameters,caches, activation_list)
    predictions = caches[n_layers-1]['A'].reshape(-1,1)

    return predictions

#image datas    
#x_train, x_test,y_train,y_test,label_names = load_data_cat()
# data used in make_circles
x_train, x_test,y_train,y_test = load_data()
plt.show()
units_list = [x_train.shape[0],3,2,1]
activation_list = ['None','relu','relu','sigmoid']
learning_rate = 0.01

def sigmoid_forward(Z):
    '''
    sigmoid function do calc of z =1.0/(1+exp(-x))
    return  z
    '''
    A = 1.0/(1.0 + np.exp(-Z))
    assert(Z.shape == A.shape)

    return A

def sigmoid_backward(dA,Z):
    '''
    Inputs:
    dA: the backprop derivations of A
    Z:  in forwardprop A = g(Z)
    return:
    dZ: the gradient of Z
    '''
    temp_A = sigmoid_forward(Z)
    # dZ = dA*A(1-A)
    dZ = np.multiply(dA,np.multiply(temp_A,(1.0-temp_A)))
    assert(dA.shape == dZ.shape)
    return dZ

def relu_forward(Z):
    '''
    relu calc
    '''
    A = np.maximum(0,Z)
    assert(A.shape == Z.shape)
    return A

def relu_backward(dA,Z):
    '''
    relu backprop calc
    '''
    dZ = np.copy(dA)
    dZ[Z<0] = 0.0
    assert(dA.shape == dZ.shape)
    return dZ   

def init(X,units_list,initialization='random'):
    '''
    function used to init variables about to use
    Inputs:
    X: inputs values used to train model
    units_list: list structure ,length is layer number, values represents units names(inputs as the 0 layers as first layers)
    Outputs:
    parameters : W,b  in every layers
    caches: Z,A  in every layers
    gradients : dZ,dA,dW,db in every layers
    '''
    np.random.seed(1)
    n_layers = len(units_list)
    m_samples = X.shape[1]
    parameters = []
    caches = []
    gradients = []
    init_scaler = []
    for i in range(n_layers):
        if i == 0:
            init_scaler.append(0.01)
        else:
            if initialization == 'zeros':
                init_scaler.append(0.0)
            elif initialization == 'he':
                init_scaler.append(np.sqrt(2.0/np.float(units_list[i-1])))
            else :
                init_scaler.append(1.0)
    # init of matrix
    for i in range(n_layers):
        param_temp = {}
        cache_temp = {}
        grad_temp  = {}
        if (i==0):
            print('test of init_scaler',init_scaler[i],init_scaler)
            param_temp['W'] = np.random.randn(units_list[i],units_list[i])*init_scaler[i]    # will not used 
            param_temp['b'] = np.random.randn(units_list[i],1)*init_scaler[i]                # will not used 
            cache_temp['Z'] = X                                                  # will not be used
            cache_temp['A'] = X                                                  #!!!!!!  trainning values important 
            grad_temp['dW'] = np.random.randn(units_list[i],units_list[i])   # will not used 
            grad_temp['db'] = np.random.randn(units_list[i])  # will not used 
            grad_temp['dA'] = np.random.randn(X.shape[0],X.shape[1])     # will not used 
            grad_temp['dZ'] = np.random.randn(X.shape[0],X.shape[1])     # will not used 
            parameters.append(param_temp)
            caches.append(cache_temp)
            gradients.append(grad_temp)
        else:
            param_temp['W'] = np.random.randn(units_list[i],units_list[i-1])*init_scaler[i]
            param_temp['b'] = np.random.randn(units_list[i],1)*init_scaler[i]
            cache_temp['Z'] = np.random.randn(units_list[i],m_samples)           
            cache_temp['A'] = np.random.randn(units_list[i],m_samples)
            grad_temp['dW'] = np.random.randn(units_list[i],units_list[i-1])
            grad_temp['db'] = np.random.randn(units_list[i],1)
            grad_temp['dA'] = np.random.randn(units_list[i],m_samples)
            grad_temp['dZ'] = np.random.randn(units_list[i],m_samples)
            parameters.append(param_temp)
            caches.append(cache_temp)
            gradients.append(grad_temp)
    return parameters, caches, gradients

def init_drop(X,units_list,drop_list,initialization='random'):
    '''
    function used to init variables about to use
    Inputs:
    X: inputs values used to train model
    units_list: list structure ,length is layer number, values represents units names(inputs as the 0 layers as first layers)
    Outputs:
    parameters : W,b  in every layers
    caches: Z,A  in every layers
    gradients : dZ,dA,dW,db in every layers
    '''
    drop_index = [drop_list[i][0] for i in range(len(drop_list))]   
    drop_prop = [drop_list[i][1] for i in range(len(drop_list))]        
    np.random.seed(1)
    n_layers = len(units_list)
    m_samples = X.shape[1]
    parameters = []
    caches = []
    gradients = []
    init_scaler = []
    for i in range(n_layers):
        if i == 0:
            init_scaler.append(0.01)
        else:
            if initialization == 'zeros':
                init_scaler.append(0.0)
            elif initialization == 'he':
                init_scaler.append(np.sqrt(2.0/np.float(units_list[i-1])))
            else :
                init_scaler.append(1.0)
    init_scaler = np.array(init_scaler)
    # init of matrix
    for i in range(n_layers):
        param_temp = {}
        cache_temp = {}
        grad_temp  = {}
        if (i==0):
            print('test of init_scaler',init_scaler[i],init_scaler)
            param_temp['W'] = np.random.randn(units_list[i],units_list[i])*init_scaler[i]    # will not used 
            param_temp['b'] = np.random.randn(units_list[i],1)*init_scaler[i]                # will not used 
            cache_temp['Z'] = X                                                  # will not be used
            cache_temp['A'] = X                                                  #!!!!!!  trainning values important 
            cache_temp['D'] = np.random.rand(X.shape[0],X.shape[1])
            grad_temp['dW'] = np.random.randn(units_list[i],units_list[i])   # will not used 
            grad_temp['db'] = np.random.randn(units_list[i])  # will not used 
            grad_temp['dA'] = np.random.randn(X.shape[0],X.shape[1])     # will not used 
            grad_temp['dZ'] = np.random.randn(X.shape[0],X.shape[1])     # will not used 
            parameters.append(param_temp)
            caches.append(cache_temp)
            gradients.append(grad_temp)
        else:
            param_temp['W'] = np.random.randn(units_list[i],units_list[i-1])*init_scaler[i]
            param_temp['b'] = np.random.randn(units_list[i],1)*init_scaler[i]
            cache_temp['Z'] = np.random.randn(units_list[i],m_samples)           
            cache_temp['A'] = np.random.randn(units_list[i],m_samples)
            cache_temp['D'] = np.random.rand(units_list[i],m_samples)
            if i in drop_index:
                index = drop_index.index(i)
                prop  = drop_prop[index]
            cache_temp['D'][cache_temp['D']<=prop] = 1.0
            cache_temp['D'][cache_temp['D']!=1.0]  = 0.0
            grad_temp['dW'] = np.random.randn(units_list[i],units_list[i-1])
            grad_temp['db'] = np.random.randn(units_list[i],1)
            grad_temp['dA'] = np.random.randn(units_list[i],m_samples)
            grad_temp['dZ'] = np.random.randn(units_list[i],m_samples)
            parameters.append(param_temp)
            caches.append(cache_temp)
            gradients.append(grad_temp)
    return parameters, caches, gradients    

def linear_forward(X,W,b):
    '''
    calc the preocess w*x + b
    '''
    Z = np.dot(W,X) + b
    assert(Z.shape[0] == W.shape[0])
    assert(Z.shape[1] == X.shape[1])
    return Z

def linear_activation_forward(A_prev,W,b,activation='None'):
    '''
    function is a single layer calc
    return cache parameters
    outputs cache values of Z,A
    '''
    Z = linear_forward(A_prev,W,b)
    if(activation == 'relu'):
        A = relu_forward(Z)
    elif(activation == 'sigmoid'):
        A = sigmoid_forward(Z)
    else:
        A = Z
        print('wrong in activation function!!!')
    assert(Z.shape == A.shape)
    return Z,A

def n_layers_forward(parameters,caches,activation_list):
    '''
    this function calc the caches use w,b and Aprev
    '''
    n_layers = len(activation_list)
    for i in range(1,n_layers):
        A_prev = caches[i-1]['A']
        W = parameters[i]['W']
        b = parameters[i]['b']
        activation = activation_list[i]
        caches[i]['Z'], caches[i]['A'] = linear_activation_forward(A_prev,W,b,activation)
    return caches

def n_layers_forward_drop(parameters,caches,activation_list,drop_list):
    '''
    this function calc the caches use w,b and Aprev
    '''
    drop_index = [drop_list[i][0] for i in range(len(drop_list))]   
    drop_prop = [drop_list[i][1] for i in range(len(drop_list))]    
    n_layers = len(activation_list)
    for i in range(1,n_layers):

        A_prev = caches[i-1]['A']
        W = parameters[i]['W']
        b = parameters[i]['b']
        activation = activation_list[i]
        caches[i]['Z'], caches[i]['A'] = linear_activation_forward(A_prev,W,b,activation)
        if i in drop_index:
            index = drop_index.index(i)
            prop = drop_prop[index]
            # D = np.random.rand(caches[i]['A'].shape[0],caches[i]['A'].shape[1])
            # D[D<=prop] = 1.0
            # D[D !=1.0] = 0.0
            D = caches[i]['D']
            assert(D.shape == caches[i]['Z'].shape)
            caches[i]['A'] = np.multiply(caches[i]['A'],D)/prop
            #caches[i]['D'] = D

    return caches   

def linear_backward(dZ,Aprev):
    '''
    single layers in linear calc backprop calc 
    Inputs:
    dZ: gradients of loss to ith layers' Z
    Aprev: cache values in (i-1) layers' matrix A
    Outputs:
    dW: gradients of loss to ith layers' W
    db: gradients of loss to ith layers' b
    '''
    m_samples = dZ.shape[1]
    dW = np.dot(dZ, Aprev.T)/np.float(m_samples)
    db = np.sum(dZ,axis=1,keepdims=True)/np.float(m_samples)

    return dW, db

def linear_activation_backward(Z,Aprev,Wplus,dZplus,activation):
    '''
    used to calc single layer's dZ,dA,dW,db
    Inputs:
    Z    : matrix of i th layers
    Aprev: matrix of previous layers
    Wplus: parameters of W of i+1 th layers
    dZplus: dz gradients of (i+1)th layers
    activation: activation function
    Outputs:
    dA: dA gradients of i th layers
    dZ: dZ gradients of i th layers
    dW: dW gradients of i th layers
    db: db gradients of i th layers
    '''
    dA = np.dot(Wplus.T,dZplus)
    if (activation == 'sigmoid'):
        dZ = sigmoid_backward(dA,Z)
    elif(activation == 'relu'):
        dZ = relu_backward(dA,Z)
    else:
        dZ = dA
        print('Wrong in calc dz,da,dw,db')
    dW,db = linear_backward(dZ,Aprev)

    return dZ,dA,dW,db
def linear_activation_backward_drop(Z,Aprev,Wplus,dZplus,D,prop,activation):
    '''
    used to calc single layer's dZ,dA,dW,db
    Inputs:
    Z    : matrix of i th layers
    Aprev: matrix of previous layers
    Wplus: parameters of W of i+1 th layers
    dZplus: dz gradients of (i+1)th layers
    activation: activation function
    Outputs:
    dA: dA gradients of i th layers
    dZ: dZ gradients of i th layers
    dW: dW gradients of i th layers
    db: db gradients of i th layers
    '''
    dA = np.dot(Wplus.T,dZplus)
    assert(dA.shape == D.shape)
    dA = np.multiply(dA,D)/prop

    if (activation == 'sigmoid'):
        dZ = sigmoid_backward(dA,Z)
    elif(activation == 'relu'):
        dZ = relu_backward(dA,Z)
    else:
        dZ = dA
        print('Wrong in calc dz,da,dw,db')
    dW,db = linear_backward(dZ,Aprev)

    return dZ,dA,dW,db  

def n_layers_backward(Y,parameters,caches,gradients, activation_list):
    '''
    used to calc the n_layers gradients
    Inputs:
    parameters: w,b every layer model to learn
    caches:     Z,A every layers
    gradients:  used as inputs
    activation_list: every layers activation_function
    Outputs:
    gradients: cost function  gradients to every in dA,dZ,dW,db 
    '''
    n_layers = len(activation_list)
    for i in range(n_layers-1,0,-1):
        activation = activation_list[i]
        Z = caches[i]['Z']
        A = caches[i]['A']
        Aprev = caches[i-1]['A']
        if (i == n_layers -1):
            gradients[i]['dA'] = -np.divide(Y,A) + np.divide((1.0-Y),(1.0-A))
            dA = gradients[i]['dA']
            gradients[i]['dZ'] = sigmoid_backward(dA,Z)
            dZ = gradients[i]['dZ']
            gradients[i]['dW'],gradients[i]['db'] = linear_backward(dZ,Aprev)
        else:
            Wplus = parameters[i+1]['W']
            dZplus = gradients[i+1]['dZ']
            gradients[i]['dZ'],gradients[i]['dA'],gradients[i]['dW'],gradients[i]['db'] = \
            linear_activation_backward(Z,Aprev,Wplus,dZplus,activation)

    return gradients

def n_layers_backward_drop_l2(Y,parameters,caches,gradients,activation_list,drop_list,lambd=0.01):
    '''
    used to calc the n_layers gradients
    Inputs:
    parameters: w,b every layer model to learn
    caches:     Z,A every layers
    gradients:  used as inputs
    activation_list: every layers activation_function
    Outputs:
    gradients: cost function  gradients to every in dA,dZ,dW,db 
    '''
    drop_index = [drop_list[i][0] for i in range(len(drop_list))]   
    drop_prop = [drop_list[i][1] for i in range(len(drop_list))]    
    m_samples = Y.shape[1]
    n_layers = len(activation_list)
    for i in range(n_layers-1,0,-1):
        activation = activation_list[i]
        Z = caches[i]['Z']
        A = caches[i]['A']
        Aprev = caches[i-1]['A']
        if (i == n_layers -1):
            gradients[i]['dA'] = -np.divide(Y,A) + np.divide((1.0-Y),(1.0-A))       
            dA = gradients[i]['dA']
            gradients[i]['dZ'] = sigmoid_backward(dA,Z)
            dZ = gradients[i]['dZ']
            gradients[i]['dW'],gradients[i]['db'] = linear_backward(dZ,Aprev)
            gradients[i]['dW'] += lambd/2.0/np.float(m_samples)*parameters[i]['W']
            gradients[i]['db'] += lambd/2.0/np.float(m_samples)*parameters[i]['b']
        else:
            Wplus = parameters[i+1]['W']
            dZplus = gradients[i+1]['dZ']
            if (i in drop_index):
                index = drop_index.index(i)
                D = caches[i]['D']
                prop = drop_prop[index]
                gradients[i]['dZ'],gradients[i]['dA'],gradients[i]['dW'],gradients[i]['db'] = \
                            linear_activation_backward_drop(Z,Aprev,Wplus,dZplus,D,prop,activation)

            gradients[i]['dW'] += lambd/2.0/np.float(m_samples)*parameters[i]['W']
            gradients[i]['db'] += lambd/2.0/np.float(m_samples)*parameters[i]['b']          
    return gradients

def n_layers_backward_l2(Y,parameters,caches,gradients,activation_list,lambd=0.01):
    '''
    used to calc the n_layers gradients
    Inputs:
    parameters: w,b every layer model to learn
    caches:     Z,A every layers
    gradients:  used as inputs
    activation_list: every layers activation_function
    Outputs:
    gradients: cost function  gradients to every in dA,dZ,dW,db 
    '''
    m_samples = Y.shape[1]
    n_layers = len(activation_list)
    for i in range(n_layers-1,0,-1):
        activation = activation_list[i]
        Z = caches[i]['Z']
        A = caches[i]['A']
        Aprev = caches[i-1]['A']
        if (i == n_layers -1):
            gradients[i]['dA'] = -np.divide(Y,A) + np.divide((1.0-Y),(1.0-A))
            dA = gradients[i]['dA']
            gradients[i]['dZ'] = sigmoid_backward(dA,Z)
            dZ = gradients[i]['dZ']
            gradients[i]['dW'],gradients[i]['db'] = linear_backward(dZ,Aprev)
            gradients[i]['dW'] += lambd/2.0/np.float(m_samples)*parameters[i]['W']
            gradients[i]['db'] += lambd/2.0/np.float(m_samples)*parameters[i]['b']
        else:
            Wplus = parameters[i+1]['W']
            dZplus = gradients[i+1]['dZ']
            gradients[i]['dZ'],gradients[i]['dA'],gradients[i]['dW'],gradients[i]['db'] = \
            linear_activation_backward(Z,Aprev,Wplus,dZplus,activation)
            gradients[i]['dW'] += lambd/2.0/np.float(m_samples)*parameters[i]['W']
            gradients[i]['db'] += lambd/2.0/np.float(m_samples)*parameters[i]['b']          
    return gradients    

def update_parameters(parameters,gradients,learning_rate):
    '''
    function used to update parameters w,b
    Inputs:
    parameters,gradients,learning_rate
    Outputs: 
    parameters: updated parameters
    '''
    n_layers = len(parameters)
    #print('shape of learning_rate',learning_rate)
    for i in range(1,n_layers):
        assert(parameters[i]['W'].shape == gradients[i]['dW'].shape)
        assert(parameters[i]['b'].shape == gradients[i]['db'].shape)
        parameters[i]['W']  += -learning_rate*gradients[i]['dW']
        parameters[i]['b']  += -learning_rate*gradients[i]['db']

    return parameters

def cost_function(AL,Y):
    '''
    function to calc cost values
    Inputs: AL last layers' cache matrix A
    Y: labeled samples targets
    Outputs:
    loss: total cost function values
    '''
    m_samples = Y.shape[1]
    AL.reshape(-1,1)
    Y.reshape(-1,1)
    loss = np.dot(Y.T,np.log(AL)) + np.dot((1.0-Y).T,np.log(1.0-AL))
    loss = -loss / np.float(m_samples)
    loss = loss.reshape(-1,1)
    loss = loss[0]
    return loss

def cost_function_l2(AL,Y,parameters,lambd):    
    '''
    function to calc cost values
    Inputs: AL last layers' cache matrix A
    Y: labeled samples targets
    parameters: W in each layers with be used
    lambd: coefficience of regulazition
    Outputs:
    loss: total cost function values
    '''
    m_samples = Y.shape[1]
    n_layers = len(parameters)  
    AL.reshape(-1,1)
    Y.reshape(-1,1)
    loss_norm = np.dot(Y.T,np.log(AL)) + np.dot((1.0-Y).T,np.log(1.0-AL))
    loss_norm = -loss_norm / np.float(m_samples)
    loss_norm = loss_norm.reshape(-1,1)
    loss_norm = loss_norm[0]
    loss_l2 = 0.0
    for i in range(1,n_layers):
        loss_l2 += np.sum(np.multiply(parameters[i]['W'],parameters[i]['W']))
    loss_l2 = loss_l2 * lambd/2.0/np.float(m_samples)
    loss = loss_norm + loss_l2
    return loss 

def predict(AL,Y):
    '''
    function use learned parameters to predict 
    Inputs:
    AL: last layer cache matrix
    Y: labeled datas
    Outputs:
    accuracy: the predict accuracy real number
    '''
    AL = AL.reshape(-1,1)
    Y  = Y.reshape(-1,1)
    m_samples = Y.shape[0]
    counts = 0.0
    for i in range(m_samples):
        if AL[i] >=0.5:
            AL[i] = 1.0
        else:
            AL[i] = 0.0

    accuracy = np.sum(AL == Y)/np.float(m_samples)

    return accuracy

# def learning_process(X,Y,units_list,activation_list,learning_rate = 0.0075):
    # '''
    # function used to learn model 
    # Inputs:
    # X: inputs data including features
    # Y: labeled data
    # learning_rate: learning_rate
    # units_list :  layers length and layers units number
    # activation_list: activations in each layer
    # Outputs:
    # parameters: learned W b in all layers
    # loss: total cost function in convergence  
    # '''
    # n_layers = len(units_list)
    # num_epoch = 30000
    # loss_list = []
    # accuracy_list = []
    # accuracy_test = []
    # steps = []
    # #plt.ion()
    # plt.figure(1)
    # plt.figure(2)
    # loss_temp = 0.0
    # parameters, caches, gradients = init(X,units_list,initialization='he')
    # for i in range(num_epoch):
        # caches = n_layers_forward(parameters,caches,activation_list)
        # loss = cost_function(caches[n_layers-1]['A'],Y)
        # dloss = np.abs(loss-loss_temp)/(np.abs(loss)+1.0e-15)
        # loss_temp = loss
        # gradients = n_layers_backward(Y,parameters,caches,gradients,activation_list)
        # parameters = update_parameters(parameters,gradients,learning_rate)

        # if(i%200 == 0):
            # steps.append(i)
            # loss_list.append(loss)
            # accuracy_list.append(predict(caches[n_layers-1]['A'],Y))
            # test_predictions = model_pred(x_test,parameters,activation_list)
            # accuracy_test.append(predict(test_predictions,y_test))
            # print('The trainning steps is {0} total loss is: {1} residual is:{2}'.format(i,loss,dloss))
            # print('The trainning accuracy is {0},test is:{1}'.format(accuracy_list[-1],accuracy_test[-1]))
            # plt.figure(1)
            # line1,=plt.plot(steps,loss_list,'r',linewidth=1.5)
            # plt.xlabel('Trainning steps')
            # plt.ylabel('Total loss values')
            # plt.legend([line1],['total loss'],loc = 'best')
            # plt.figure(2)
            # line2, = plt.plot(steps,accuracy_list,'g',linewidth=1.5)
            # line3, = plt.plot(steps,accuracy_test,'r',linewidth=1.5)
            # plt.xlabel('Trainning steps')
            # plt.ylabel('Trainning Accuracy')
            # plt.legend([line2,line3],['Trainning Accuracy','Test Accuracy'],loc='best')
            # #plt.pause(0.01)

    # return parameters, loss   

def grad_checking(Y,parameters,caches,gradients,activation_list):
    '''

    '''
    caches = n_layers_forward(parameters,caches,activation_list)
    gradients = n_layers_backward(Y,parameters,caches,gradients,activation_list)
    # start gradient_appro calc
    n_layers = len(activation_list)
    print('thi is out of n_layersin checking',n_layers)
    m_samples = Y.shape[1]
    epsol = 1.0e-7
    grad_appro = []
    grad_diff  = []
    # this is 0 layer's grad_appro 
    grad_temp = {}
    grad_temp['W'] = np.zeros([2,2])
    grad_temp['b'] = np.zeros([2,1])
    grad_appro.append(grad_temp)
    grad_diff.append(grad_temp)
    # from 1st layer calc
    for k in range(1,n_layers):
        nx,ny = parameters[k]['W'].shape[0],parameters[k]['W'].shape[1]
        grad_temp = {}
        diff_temp = {}
        grad_temp['dW'] = np.zeros([nx,ny])
        diff_temp['dW'] = np.zeros([nx,ny])
        grad_temp['db'] = np.zeros([nx,1])  
        diff_temp['db'] = np.zeros([nx,1])
        w_temp = parameters[k]['W']
        b_temp = parameters[k]['b']
        for i in range(nx):
            parameters[k]['b'][i][0] += -1.0*epsol
            caches_temp = n_layers_forward(parameters,caches,activation_list)
            j_minus = cost_function(caches_temp[n_layers-1]['A'],Y)
            parameters[k]['b'][i][0] += 2.0*epsol
            caches_temp = n_layers_forward(parameters,caches,activation_list)
            j_plus  = cost_function(caches_temp[n_layers-1]['A'],Y)
            grad_temp['db'][i][0] = (j_plus-j_minus)/2.0/epsol
            parameters[k]['b'] = b_temp
            for j in range(ny):
                parameters[k]['W'][i][j] += -1.0*epsol
                caches_temp = n_layers_forward(parameters,caches,activation_list)
                j_minus = cost_function(caches_temp[n_layers-1]['A'],Y)
                parameters[k]['W'] += 2.0*epsol
                caches_temp = n_layers_forward(parameters,caches,activation_list)
                j_plus = cost_function(caches_temp[n_layers-1]['A'],Y)
                grad_temp['dW'][i][j] = (j_plus - j_minus)/2.0/epsol
                parameters[k]['W'] = w_temp
        grad_appro.append(grad_temp)
        assert(grad_temp['dW'].shape == gradients[k]['dW'].shape)
        assert(grad_temp['db'].shape == gradients[k]['db'].shape)
        diff_temp['dW'] = np.abs(grad_appro[k]['dW']-gradients[k]['dW'])/(np.abs(grad_appro[k]['dW'])+np.abs(gradients[k]['dW']))
        diff_temp['db'] = np.abs(grad_appro[k]['db']-gradients[k]['db'])/(np.abs(grad_appro[k]['db'])+np.abs(gradients[k]['db']))
        grad_diff.append(diff_temp)

    for k in range(1,n_layers):
        print(len(grad_diff))
        print('this is {0}th layer outputs!!!!!!!'.format(k))
        print("this is out of {0} th layer's dW :".format(k))
        print(grad_diff[k]['dW'])
        print(grad_appro[k]['dW'])
        print(gradients[k]['dW'])       
        print("this is out of {0} th layers's db:".format(k))
        print(grad_diff[k]['db'])
        print(grad_appro[k]['db'])
        print(gradients[k]['db'])
    return grad_diff

2、将如下代码段保存成initialize_l2_drop.py则可进行相应的验证:

import numpy as np
import matplotlib.pyplot as plt
import sklearn.datasets
import h5py
import pdb

#matplotlib inline
from base_utils import sigmoid_forward,sigmoid_backward,relu_forward,relu_backward
from base_utils import linear_forward,linear_backward,linear_activation_forward,linear_activation_backward
from base_utils import n_layers_forward,n_layers_backward,cost_function,predict,model_pred, init
from base_utils import update_parameters,n_layers_backward_l2,cost_function_l2
from base_utils import load_2D_dataset,plot_decision_boundary,load_data_cat
from base_utils import init_drop,n_layers_forward_drop,n_layers_backward_drop_l2
from base_utils import grad_checking

learning_rate = 0.01
#x_train,x_test,y_train, y_test = load_2D_dataset()
x_train,x_test,y_train, y_test,label_names = load_data_cat()
units_list = [x_train.shape[0],15,5,1]
activation_list = ['None','relu','relu','sigmoid']
drop_list = [(1,0.86),(2,0.86)]
l2 = True
lambd = 0.0
initialization = 'he'
#print('first y_test',y_test)



def model(X,Y,units_list,activation_list,learning_rate=0.0075,l2 = False,lambd=0.0,initialization='random'):
    '''
    function used to learn model 
    Inputs:
    X: inputs data including features
    Y: labeled data
    learning_rate: learning_rate
    units_list :  layers length and layers units number
    activation_list: activations in each layer
    Outputs:
    parameters: learned W b in all layers
    loss: total cost function in convergence    
    '''
    epoch_num = 10000
    accuracy = []
    accuracy_test = []
    loss_list = []
    steps = []
    #plt.ion()
    plt.figure(2)
    plt.figure(3)
    loss_temp = 0.0
    n_layers = len(units_list)
    parameters,caches,gradients = init(X,units_list,initialization=initialization)
    for i in range(epoch_num):
        # #if (i == 3000):
        # grad_diff = grad_checking(Y,parameters,caches,gradients,activation_list)
        # pdb.set_trace()
        caches = n_layers_forward(parameters,caches,activation_list)
        if (not l2) :
            loss = cost_function(caches[n_layers-1]['A'],Y)
            gradients = n_layers_backward(Y,parameters,caches,gradients,activation_list)
        else:
            loss = cost_function_l2(caches[n_layers-1]['A'],Y,parameters,lambd)
            gradients = n_layers_backward_l2(Y,parameters,caches,gradients,activation_list,lambd)
        dloss = np.abs(loss - loss_temp)/(np.abs(loss)+1.0e-15)
        loss_temp = loss
        parameters = update_parameters(parameters,gradients,learning_rate)

        if(i%200 == 0):
            print('Steps is{0}, total loss value is:{1},resudal is:{2}'.format(i,loss,dloss))
            steps.append(i)
            loss_list.append(loss)
            accuracy.append(predict(caches[n_layers-1]['A'],Y))
            predictions = model_pred(x_test,parameters,activation_list)
            accuracy_test.append(predict(predictions,y_test))
            print('Steps is{0},trainning accuracy is:{1},test_accuracy is:{2}'.format(i,accuracy[-1],accuracy_test[-1]))
            plt.figure(2)
            line1, = plt.plot(steps,loss_list, 'g',linewidth=1.5)
            plt.xlabel('Trainning steps')
            plt.ylabel('Total Loss')
            plt.title('Trainning loss vs steps learning_rate is:{0} l2 is{1}'.format(learning_rate,l2))
            plt.legend([line1],['Trainning loss'],loc='best')

            plt.figure(3)
            line2, = plt.plot(steps,accuracy,'r',linewidth=1.5)
            line3, = plt.plot(steps,accuracy_test,'b',linewidth=1.5)
            plt.xlabel('Trainning steps')
            plt.ylabel('Accuracy')
            plt.title('Accuracy vs Steps! learning_rate:{0},l2:{1}'.format(learning_rate, l2))
            plt.legend([line2,line3],['Trainning accuracy','Test accuracy'],loc='best')
            #plt.pause(0.01)
    return parameters, loss

def model_drop(X,Y,units_list,activation_list,drop_list,learning_rate=0.0075,l2 = False,lambd=0.0,initialization='random'):
    '''
    function used to learn model 
    Inputs:
    X: inputs data including features
    Y: labeled data
    learning_rate: learning_rate
    units_list :  layers length and layers units number
    activation_list: activations in each layer
    Outputs:
    parameters: learned W b in all layers
    loss: total cost function in convergence    
    '''
    epoch_num = 15000
    accuracy = []
    accuracy_test = []
    loss_list = []
    steps = []
    #plt.ion()
    plt.figure(2)
    plt.figure(3)
    loss_temp = 0.0
    n_layers = len(units_list)
    parameters,caches,gradients = init_drop(X,units_list,drop_list,initialization=initialization)
    for i in range(epoch_num):
        caches = n_layers_forward_drop(parameters,caches,activation_list,drop_list)
        if (not l2) :
            loss = cost_function(caches[n_layers-1]['A'],Y)
            gradients = n_layers_backward(Y,parameters,caches,gradients,activation_list)
        else:
            loss = cost_function_l2(caches[n_layers-1]['A'],Y,parameters,lambd)
            n_layers_backward_l2(Y,parameters,caches,gradients,activation_list,lambd)
            #gradients = n_layers_backward_drop_l2(Y,parameters,caches,gradients,activation_list,drop_list,lambd)
        dloss = np.abs(loss - loss_temp)/(np.abs(loss)+1.0e-15)
        loss_temp = loss
        parameters = update_parameters(parameters,gradients,learning_rate)

        if(i%200 == 0):
            print('Steps is{0}, total loss value is:{1},resudal is:{2}'.format(i,loss,dloss))
            steps.append(i)
            loss_list.append(loss)
            accuracy.append(predict(caches[n_layers-1]['A'],Y))
            predictions = model_pred(x_test,parameters,activation_list)
            accuracy_test.append(predict(predictions,y_test))
            print('Steps is{0},trainning accuracy is:{1},test_accuracy is:{2}'.format(i,accuracy[-1],accuracy_test[-1]))
            plt.figure(2)
            line1, = plt.plot(steps,loss_list, 'g',linewidth=1.5)
            plt.xlabel('Trainning steps')
            plt.ylabel('Total Loss')
            plt.title('Trainning loss vs steps learning_rate is:{0} l2 is{1}'.format(learning_rate,l2))
            plt.legend([line1],['Trainning loss'],loc='best')

            plt.figure(3)
            line2, = plt.plot(steps,accuracy,'r',linewidth=1.5)
            line3, = plt.plot(steps,accuracy_test,'b',linewidth=1.5)
            plt.xlabel('Trainning steps')
            plt.ylabel('Accuracy')
            plt.title('Accuracy vs Steps! learning_rate:{0},l2:{1}'.format(learning_rate, l2))
            plt.legend([line2,line3],['Trainning accuracy','Test accuracy'],loc='best')
            #plt.pause(0.01)
    return parameters, loss                 


parameters, loss = model(x_train,y_train,units_list,activation_list,\
                learning_rate=learning_rate,l2=l2,lambd=lambd,initialization=initialization)                
plt.show()
plt.figure(4)
plt.xlabel('X Feature 1')
plt.ylabel('X Feature 2')
plt.title(' trainning data and model boundary')
plot_decision_boundary(lambda x:model_pred(x,parameters,activation_list),x_train,y_train)
print('final loss is ',loss)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值