赛题理解
项目数据
该数据来自真实场景的门牌号。训练集数据包括**3W**张照片,验证集数据包括**1W**张照片,每张照片包括颜色图像和对应的编码类别和具体位置;为了保证比赛的公平性,测试集A包括**4W**张照片,测试集B包括**4W**张照片。
相关数据
标签
所有的数据使用(训练集和验证集)json格式进行标注,如果一个文件中包含多个字符,则使用列表将字段进行组合。可能某些图片中包含多个字符,因此在使用JSON格式进行标注的时候,会有多个字符边框的信息。
评价指标
以编码整体识别准确率为评价指标。任何一个字符错误都为错误,最终评测指标结果越大越好,具体计算公式如下:
Score=编码识别正确的数量/测试集图片数量
解题思路
赛题思路分析:赛题本质是分类问题,需要对图片的字符进行识别。但赛题给定的数据图片中不同图片中包含的字符数量不等。有的图片的字符个数为2,有的图片字符个数为3,有的图片字符个数为4。
简单入门思路:定长字符识别
可以将赛题抽象为一个定长字符识别问题,在赛题数据集中大部分图像中字符个数为2-4个,最多的字符 个数为6个。因此可以对于所有的图像都抽象为6个字符的识别问题,字符23填充为23XXXX,字符231填充为231XXX。经过填充之后,原始的赛题可以简化了6个字符的分类问题。在每个字符的分类中会进行11个类别的分类,假如分类为填充字符,则表明该字符为空。
专业字符识别思路:不定长字符识别
在字符识别研究中,有特定的方法来解决此种不定长的字符识别问题,比较典型的有CRNN字符识别模型。在本次赛题中给定的图像数据都比较规整,可以视为一个单词或者一个句子。
专业分类思路:检测再识别
此种思路需要参赛选手构建字符检测模型,对测试集中的字符进行识别。选手可以参考物体检测模型SSD或者YOLO来完成。