SCU~4488: king's trouble II(dp)

Time Limit: 1000 MS    Memory Limit: 131072 K 


 
 

Description

Long time ago, a king occupied a vast territory. Now there is a problem that he worried that he want to choose a largest square of his territory to build a palace. Can you help him? For simplicity, we use a matrix to represent the territory as follows: 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 Every single number in the matrix represents a piece of land, which is a 1*1 square 1 represents that this land has been occupied 0 represents not Obviously the side-length of the largest square is 2

Input

The first line of the input contains a single integer t (1≤t≤5) — the number of cases. For each case The first line has two integers N and M representing the length and width of the matrix Then M lines follows to describe the matrix 1≤N,M≤1000

Output

For each case output the the side-length of the largest square

Sample Input

2 5 5 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 5 5 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0

Sample Output

1 2

想到了DP,却没看出规律,dp确实是弱项,以后刷题要有倾斜

判断此点左边,左上,上是否都为1,如果为1,则此点等于其中最小值+1

#include <iostream>
#include<stdio.h>
#include<string.h>
#include<string>
#include<algorithm>
#include<stdlib.h>
#include<queue>
#include<map>
#include<vector>
#define mem(a,b) memset(a,b,sizeof(a))
#define inf 0x3f3f3f3f
#define LL long long int
using namespace std;
int dp[1005][1005];
int main()
{
   int t;
   scanf("%d",&t);
   while(t--)
   {
       int n,m,ans=0;
       scanf("%d%d",&n,&m);
       for(int i=0;i<n;i++)
       {
           for(int j=0;j<m;j++)
           {
               scanf("%d",&dp[i][j]);
           }
       }
       for(int i=1;i<n;i++)
       {
           for(int j=1;j<m;j++)
           {
               if(dp[i][j])
               dp[i][j]=min(dp[i-1][j],min(dp[i-1][j-1],dp[i][j-1]))+1;
               ans=max(ans,dp[i][j]);
           }
       }
       printf("%d\n",ans);
   }


}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值