matlab刚性与非刚性情境下使用的ode求解器使用指南

解决常微分数值解的情况分为刚性问题与非刚性问题。问题不同使用的函数不同,使用错了,迭代时间久了,反而效果不是很明显。

非刚性问题

在这里插入图片描述

刚性问题定义及求解器使用

所谓刚性问题,其数值解变化分量特别诡异,有时很慢,有时很快;变化快的分量很快趋于稳定值,而变化慢的分量缓慢趋于稳定值,变化快时,我们想要积分小步长,慢的趋于稳定的,我们想要步长放大。但是事与愿违,因此称这种在步长选择上有纠结的为刚性问题。在这里插入图片描述

汇总版本ode使用指南

求解器方法描述使用场合
ode232到3阶Runge-Kutta算法,低精度非刚性
ode454-5阶Runge-Kutta算法,中精度非刚性
ode113Adams算法,精度可到10的-3次到10^-4次非刚性,计算时间比ode45快
ode23t梯形算法适度刚性
ode15s反向数值微分算法,中精度刚性
ode23s2阶Rosebrock算法,低精度刚性,当精度较低时,计算时间比ode15s短
ode23tb梯形算法,低精度刚性,当精度较低时,计算时间比ode15s短
ode15i可变秩求法完全隐形微分方程

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值