线性规划问题 --- Linear Program Problem

本文详细介绍了线性规划(LP)问题,包括其一般形式、两种特殊形式(标准形式和不等式形式)以及如何将一般形式转化为标准形式。线性规划在解决凸优化问题时具有重要意义,其可行域为多边形。此外,还讨论了线性分式规划及其转换为线性规划的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性规划问题 — Linear Program Problem

作者:Alex Hu
博客:https://blog.csdn.net/m0_37204267
转载请注明作者和出处。


1. LP问题的一般形式

当目标函数和约束函数都是放射时, 问题称作线性规划(LP)。一般线性规划具有以下形式:

minimizesubject tocTx+dGxhAx=b m i n i m i z e c T x + d s u b j e c t   t o G x ⪯ h A x = b

其中 GRm×n,ARp×n G ∈ R m × n , A ∈ R p × n , ⪯ 表示广义不等号。

线性规划也是凸优化问题。它的可行集是一个多边形。几何解释如下:
这里写图片描述


2. LP的两种特殊形式

LP问题的以下两种形式已被深入研究。

  • 标准形式线性规划
    minimizesubject tocTxAx=bx0 m i n i m i z e c T x s u b j e c t   t o A x = b x ⪰ 0
  • 不等式形式线性规划
以下是一个求解标准形式线性规划问题的单纯形方法 MATLAB 程序的示例: ```matlab function [x, fval] = simplex(c, A, b) % SIMPLEX Solve a linear programming problem in standard form using the simplex algorithm. % x = SIMPLEX(c, A, b) solves the linear programming problem: % % minimize c'x % subject to Ax = b % x >= 0 % % using the simplex algorithm. The inputs c, A, and b are the coefficients of the objective function, % the constraint matrix, and the right-hand side vector, respectively. The output x is the optimal % solution and fval is the optimal objective function value. % % Reference: "Numerical Optimization" by Nocedal and Wright, 2nd edition, page 304. % initialize [m, n] = size(A); B = eye(m); N = setdiff(1:n, 1:m); x_B = b; x_N = zeros(n-m, 1); c_B = c(1:m); c_N = c(N); z = c_B' * x_B; % loop while true % check optimality if all(c_N >= 0) x = zeros(n, 1); x(N) = x_N; x(1:m) = x_B; fval = c' * x; return end % choose entering variable [~, j] = min(c_N); % check unboundedness if all(A(:, N(j)) <= 0) error('Linear program is unbounded') end % choose leaving variable t = x_B ./ A(:, N(j)); t(t <= 0) = Inf; [~, i] = min(t); % update basis B(i, :) = A(i, :); x_N(j) = x_B(i) / A(i, N(j)); x_B(i) = 0; c_B(i) = c(N(j)); c_N(j) = 0; N(j) = i; % update objective function value z = c_B' * x_B; end ``` 该程序的输入为三个参数: - `c`:长度为 `n` 的列向量,表示目标函数的系数。 - `A`:大小为 `m x n` 的矩阵,表示约束条件的系数矩阵。 - `b`:长度为 `m` 的列向量,表示约束条件的右侧常数向量。 程序的输出为两个参数: - `x`:长度为 `n` 的列向量,表示最优解。 - `fval`:最优目标函数值。 该程序使用的是标准形式线性规划问题的单纯形算法。在该算法中,以单位矩阵作为初始基,然后在每一步中选择一个入基变量和一个出基变量,通过更新基和非基变量来移动到更优的解。如果问题是无界的,则程序将抛出一个错误。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值