自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

欢迎关注,共同进步!

专注于分享AI实用技巧,好用的AI工具以及用AI做副业等内容。

  • 博客(14)
  • 收藏
  • 关注

原创 2025最新Chatbox全攻略:一键配置Claude/GPT/DeepSeek等主流模型(亲测可用)

2025-03-26 14:26:51 1558

原创 Cursor怎么使用,Cursor键盘快捷键速查,3分钟上手Cursor:比ChatGPT更懂需求,用聊天的方式写代码,GPT4、Claude 3.5等先进LLM辅助编程

掌握这些核心的 Cursor 键盘快捷操作与符号用法,将有效提升您的工作效率。本指南囊括了 Cursor 人工智能功能的关键指令组合,包含 Tab 智能补全、Cmd+K 内联编辑、即时聊天窗口、Composer 创作模式以及 @ 符号的上下文引用功能(Windows/Linux 系统使用 Ctrl 键,macOS 系统对应 Command 键。

2025-04-02 14:43:54 453

原创 LangChain实体记忆组件的使用与解析

实体记忆指的是跟踪对话中提到的实体,并且在对话中记住关于特定实体的既定事实,它提取关于实体的信息(使用LLM),并随着时间的推移建立对该实体的知识(使用LLM),一般使用实体记忆来存储和查询对话中引用的各种信息,比如人物、地点、事件等。在 LangChain 内部封装了一个实体记忆类,这个类可以从对话历史中提取实体并生成描述(简单来讲,就是提取关键词+对应的描述),不过预设的 Prompt 过于笨重,而且极度消耗 Token,并且对大模型的要求极高,所以实用度并不高。Human: 你好,我是csdn。

2025-04-01 08:45:20 188

原创 BaseChatMemory 运行流程及源码

【代码】BaseChatMemory 运行流程及源码。

2025-03-29 16:29:36 258

原创 Memory组件运行流程及不同记忆分类

功能,这一功能目前可以无缝接入 LCEL 进行集成,并且根据源码的注释及更新路线说明,预计 LangChain 团队会在。版本,开始支持将 Memory 组件纳入到 LCEL 语法,目前版本的 Memory 组件均是 0.0.X 版本的产物。组件是 LangChain 中内置的其他记忆组件的基类,针对对话历史进行了特定的封装,以适用聊天模型对话的场合。实现了记忆组件的相关方法,但是不存储任何记忆,可以在不修改代码结构的情况下替换记忆组件,实现无记忆功能。Memory 组件的基类是。基类,衍生出了两个子类。

2025-03-29 16:27:12 482

原创 给聊天机器人装“短期记忆“:Flask版实现指南

创建session_id。

2025-03-27 22:07:14 1160

原创 给AI装“记忆U盘“:LangChain记忆持久化入门指南

​普通模式:每次重启都忘记之前聊过什么​持久化模式:给AI配了个"记忆U盘",聊天记录永不丢失。

2025-03-27 22:04:15 684

原创 几种环境下的Postgres数据库安装

开源:PostgreSQL 是基于开源许可证发布的,任何人都可以免费使用、修改和分发它。关系型数据库:PostgreSQL 是一种关系型数据库,支持 SQL 查询语句,具有强大的数据处理能力。可扩展性:PostgreSQL 支持多种插件扩展,可以满足各种不同规模和需求的应用场景。支持复杂数据类型:除了传统的数据类型外,PostgreSQL 还支持数组、JSON、XML 等复杂数据类型。事务支持:PostgreSQL 提供完整的 ACID 事务支持,确保数据的一致性和可靠性。

2025-03-26 13:58:29 844

原创 给AI装记忆的奇妙方法(附实现流程图)

你以为和ChatGPT聊天时它记得之前的对话?

2025-03-25 14:04:08 1029

原创 LLM与AI Agent交互范式的演进

本文探讨人机交互模式在大型语言模型(LLM)出现前后的范式转变,并解析LLM应用开发的核心逻辑。

2025-03-24 11:40:44 260

原创 AI大脑养成记:大语言模型训练全解析

训练就是让AI从错误中学习每次调整都在优化70亿个参数海量数据+计算量=高成本最终目标是形成语言预测本能💡 小知识:ChatGPT的"思考"过程,本质上就是在玩超高级的"词语接龙"游戏!

2025-03-23 21:18:19 220

原创 解密AI语言模型:从“文字乐高“到智能对话

​Token = 文字积木块​(可以是完整的词、字,甚至是半个字)​中文例子:“机器学习” → 可能拆成 [“机器”, “学习”] 或 [“机”, “器”, “学”, “习”]​英文例子:“unbelievable” → 拆成 [“un”, “believ”, “able”]Token是AI理解文字的基本单元词表就像模型的"文字字典"预测机制从查表升级到数学计算中文处理比英文更复杂💡 小测试:试着把这句话拆成Token → “深度学习真有趣!

2025-03-23 20:55:53 859

原创 三分钟搞懂大语言模型:原来AI是这么说话的!

三分钟搞懂大语言模型:原来AI是这么说话的!

2025-03-22 19:37:34 783

原创 智能助手大进化!普通人也能看懂的Agent技术解析

的诞生,就像给智能助手装上了超强引擎!💡 ​:现在开发智能助手的门槛,就像智能手机普及一样越来越低!

2025-03-22 13:58:01 938

大数据专家:从数据清洗到数据指标设计的数据处理全链路

内容概要:本文聚焦一位资深的大数据专家的角色及职能,他负责通过大数据技术(比如 Hadoop 和 Spark),从杂乱的数据源中提取有价值的信息,完成一系列关键的数据处理任务,包括数据清洗、转换、加载及指标设计,确保所获得的数据能直接支持业务决策。文中详细介绍了专家在各个数据处理阶段需要掌握的专业技能和应该遵循的标准流程,如数据的质量保证措施,数据的一致性和完整性的保障方法。此外,还涉及一些与团队协作有关的内容和沟通协调技巧。 适用人群:对大数据领域感兴趣的专业人士或者希望深入了解大数据处理全过程的个人,尤其是有一定工作经验的数据分析师和技术爱好者。 使用场景及目标:适用于需要提升自己数据处理技能的人群,在实际工作中负责或参与数据处理相关项目,目标是通过掌握更高级别的技能和知识,更好地处理企业内部的数据资产,为公司的业务增长提供坚实的数据支持。 其他说明:除了具体的技能介绍之外,文档特别强调了遵守公司内部规章制度的重要性,这在任何行业的实际工作中都是非常重要的一个环节,对于初学者尤其值得注意。

2025-03-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除