从LLM到AI Agent的技术演进路径

本文解析大型语言模型(LLM)向智能体(Agent)演进的技术框架,涵盖核心概念关联、架构范式及实现逻辑。

技术演进的三层架构体系

技术层级定义技术特征
LLM基于海量语料训练的生成模型(如GPT、LLaMA)提供基础语义理解与文本生成能力
RAG检索增强生成技术(Retrieval-Augmented Generation)融合外部知识库检索与LLM生成能力,提升输出准确性
AI Agent具备环境感知、任务规划与工具调用能力的智能系统整合LLM、RAG与工具链,实现闭环决策与执行

技术关联演进逻辑

  1. 基础层(LLM)
    通过Transformer架构实现端到端的语言建模:
    Output = f θ ( Input ) \text{Output} = f_{\theta}(\text{Input}) Output=fθ(Input)
    主要解决语义空间到文本空间的映射问题

  2. 增强层(RAG)
    构建知识检索与生成协同架构:
    Response = G ( R ( Q , K ) , Q ) \text{Response} = G(R(Q,K), Q) Response=G(R(Q,K),Q)
    其中 R R R为检索函数, G G G为生成函数, K K K为知识库

  3. 应用层(Agent)
    建立感知-决策-执行循环系统:
    Action t = π ( State t , Memory < t ) \text{Action}_t = \pi(\text{State}_t, \text{Memory}_{<t}) Actiont=π(Statet,Memory<t)
    通过强化学习框架实现动态环境适应

AI Agent的核心技术架构

定义演进

OpenAI技术标准定义:

“以LLM为认知中枢,集成工具调用(Tool Use)、记忆管理(Memory)、规划推理(Planning)的自主任务执行系统”

系统组件

  1. 感知模块

    • 多模态信号输入解析(文本/图像/传感器数据)
    • 上下文环境建模
  2. 认知中枢

    • LLM驱动的意图识别: Intent = arg ⁡ max ⁡ P ( y ∣ x ) \text{Intent} = \arg\max P(y|x) Intent=argmaxP(yx)
    • RAG增强的知识推理
  3. 执行引擎

    • 工具调用协议(如OpenAI Function Calling)
    • 工作流引擎(Workflow Orchestration)

典型实现框架

class Agent:
    def __init__(self, llm, tools):
        self.llm = llm  # 大语言模型核心
        self.tools = tools  # 工具调用集
        
    def run(self, query):
        plan = self.llm.generate_plan(query)  # 任务规划
        for step in plan:
            tool = self.select_tool(step)  # 工具选择
            result = tool.execute(step)  # 执行反馈
        return self.llm.synthesize(results)  # 结果合成

实践验证:多模态Agent构建

通过ChatGPT模拟实现基础Agent功能:

工具集成

  • IP定位API:ip-api.com
  • WolframAlpha数学计算
  • Google Search API

工作流示例

用户输入 → 意图分类 → 调用IP工具 → 地理数据分析 → 生成可视化报告

技术展望

当前Agent系统在复杂任务规划与长期记忆管理方面仍存在局限,未来需突破:

  • 动态工具组合优化算法
  • 分层强化学习框架
  • 神经符号混合架构
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ai大师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值