本文解析大型语言模型(LLM)向智能体(Agent)演进的技术框架,涵盖核心概念关联、架构范式及实现逻辑。
技术演进的三层架构体系
技术层级 | 定义 | 技术特征 |
---|---|---|
LLM | 基于海量语料训练的生成模型(如GPT、LLaMA) | 提供基础语义理解与文本生成能力 |
RAG | 检索增强生成技术(Retrieval-Augmented Generation) | 融合外部知识库检索与LLM生成能力,提升输出准确性 |
AI Agent | 具备环境感知、任务规划与工具调用能力的智能系统 | 整合LLM、RAG与工具链,实现闭环决策与执行 |
技术关联演进逻辑
-
基础层(LLM)
通过Transformer架构实现端到端的语言建模:
Output = f θ ( Input ) \text{Output} = f_{\theta}(\text{Input}) Output=fθ(Input)
主要解决语义空间到文本空间的映射问题 -
增强层(RAG)
构建知识检索与生成协同架构:
Response = G ( R ( Q , K ) , Q ) \text{Response} = G(R(Q,K), Q) Response=G(R(Q,K),Q)
其中 R R R为检索函数, G G G为生成函数, K K K为知识库 -
应用层(Agent)
建立感知-决策-执行循环系统:
Action t = π ( State t , Memory < t ) \text{Action}_t = \pi(\text{State}_t, \text{Memory}_{<t}) Actiont=π(Statet,Memory<t)
通过强化学习框架实现动态环境适应
AI Agent的核心技术架构
定义演进
OpenAI技术标准定义:
“以LLM为认知中枢,集成工具调用(Tool Use)、记忆管理(Memory)、规划推理(Planning)的自主任务执行系统”
系统组件
-
感知模块
- 多模态信号输入解析(文本/图像/传感器数据)
- 上下文环境建模
-
认知中枢
- LLM驱动的意图识别: Intent = arg max P ( y ∣ x ) \text{Intent} = \arg\max P(y|x) Intent=argmaxP(y∣x)
- RAG增强的知识推理
-
执行引擎
- 工具调用协议(如OpenAI Function Calling)
- 工作流引擎(Workflow Orchestration)
典型实现框架
class Agent:
def __init__(self, llm, tools):
self.llm = llm # 大语言模型核心
self.tools = tools # 工具调用集
def run(self, query):
plan = self.llm.generate_plan(query) # 任务规划
for step in plan:
tool = self.select_tool(step) # 工具选择
result = tool.execute(step) # 执行反馈
return self.llm.synthesize(results) # 结果合成
实践验证:多模态Agent构建
通过ChatGPT模拟实现基础Agent功能:
工具集成
- IP定位API:ip-api.com
- WolframAlpha数学计算
- Google Search API
工作流示例
用户输入 → 意图分类 → 调用IP工具 → 地理数据分析 → 生成可视化报告
技术展望
当前Agent系统在复杂任务规划与长期记忆管理方面仍存在局限,未来需突破:
- 动态工具组合优化算法
- 分层强化学习框架
- 神经符号混合架构