论文:Mask R-CNN 阅读笔记

一、简介

Mask R-CNN是一个实例分割(Instance segmentation)算法,可以用来做“目标检测”、“目标实例分割”、“目标关键点检测”。

整个Mask R-CNN算法的思路很简单,就是在原始Faster-rcnn算法的基础上面增加了FCN来产生对应的MASK分支。即Faster-rcnn + FCN,更细致的是 RPN + ROIAlign + Fast-rcnn + FCN。 

RPN可以换成FPN

 

二、细节

1、技术要点

 ● 技术要点1 - 强化的基础网络

     通过 ResNeXt-101+FPN 用作特征提取网络,达到 state-of-the-art 的效果。

● 技术要点2 - ROIAlign

     采用 ROIAlign 替代 RoiPooling(改进池化操作)。引入了一个插值过程,先通过双线性插值到14*14,再 pooling到7*7,很大程度上解决了仅通过 Pooling 直接采样带来的 Misalignment 对齐问题。

     PS: 虽然 Misalignment 在分类问题上影响并不大,但在 Pixel 级别的 Mask 上会存在较大误差。

     后面我们把结果对比贴出来(Table2 c & d),能够看到 ROIAlign 带来较大的改进,可以看到,Stride 越大改进越明显。 

● 技术要点3 - Loss Function

     每个 ROIAlign 对应 K * m^2 维度的输出。K 对应类别个数,即输出 K 个mask,m对应 池化分辨率(7*7)。Loss 函数定义:

            Lmask(Cls_k) = Sigmoid (Cls_k),    平均二值交叉熵 (average binary cross-entropy)Loss,通过逐像素的 Sigmoid 计算得到。

     Why K个mask?通过对每个 Class 对应一个 Mask 可以有效避免类间竞争(其他 Class 不贡献 Loss )。

        

2、ROIAlign

 ROIPooling和ROIAlign的分析与比较

 

图8 ROIPooling和ROIAlign的比较

如图8所示,ROI Pooling和ROIAlign最大的区别是:前者使用了两次量化操作,而后者并没有采用量化操作,使用了线性插值算法,具体的解释如下所示。

图9 ROI Pooling技术

如图9所示,为了得到固定大小(7X7)的feature map,我们需要做两次量化操作:1)图像坐标 — feature map坐标,2)feature map坐标 — ROI feature坐标。我们来说一下具体的细节,如图我们输入的是一张800x800的图像,在图像中有两个目标(猫和狗),狗的BB大小为665x665,经过VGG16网络后,我们可以获得对应的feature map,如果我们对卷积层进行Padding操作,我们的图片经过卷积层后保持原来的大小,但是由于池化层的存在,我们最终获得feature map 会比原图缩小一定的比例,这和Pooling层的个数和大小有关。在该VGG16中,我们使用了5个池化操作,每个池化操作都是2Pooling,因此我们最终获得feature map的大小为800/32 x 800/32 = 25x25(是整数),但是将狗的BB对应到feature map上面,我们得到的结果是665/32 x 665/32 = 20.78 x 20.78,结果是浮点数,含有小数,但是我们的像素值可没有小数,那么作者就对其进行了量化操作(即取整操作),即其结果变为20 x 20,在这里引入了第一次的量化误差;然而我们的feature map中有不同大小的ROI,但是我们后面的网络却要求我们有固定的输入,因此,我们需要将不同大小的ROI转化为固定的ROI feature,在这里使用的是7x7的ROI feature,那么我们需要将20 x 20的ROI映射成7 x 7的ROI feature,其结果是 20 /7 x 20/7 = 2.86 x 2.86,同样是浮点数,含有小数点,我们采取同样的操作对其进行取整吧,在这里引入了第二次量化误差。其实,这里引入的误差会导致图像中的像素和特征中的像素的偏差,即将feature空间的ROI对应到原图上面会出现很大的偏差。原因如下:比如用我们第二次引入的误差来分析,本来是2,86,我们将其量化为2,这期间引入了0.86的误差,看起来是一个很小的误差呀,但是你要记得这是在feature空间,我们的feature空间和图像空间是有比例关系的,在这里是1:32,那么对应到原图上面的差距就是0.86 x 32 = 27.52。这个差距不小吧,这还是仅仅考虑了第二次的量化误差。这会大大影响整个检测算法的性能,因此是一个严重的问题。好的,应该解释清楚了吧,好累!

图10 ROIAlign技术

如图10所示,为了得到为了得到固定大小(7X7)的feature map,ROIAlign技术并没有使用量化操作,即我们不想引入量化误差,比如665 / 32 = 20.78,我们就用20.78,不用什么20来替代它,比如20.78 / 7 = 2.97,我们就用2.97,而不用2来代替它。这就是ROIAlign的初衷。那么我们如何处理这些浮点数呢,我们的解决思路是使用“双线性插值”算法。双线性插值是一种比较好的图像缩放算法,它充分的利用了原图中虚拟点(比如20.56这个浮点数,像素位置都是整数值,没有浮点值)四周的四个真实存在的像素值来共同决定目标图中的一个像素值,即可以将20.56这个虚拟的位置点对应的像素值估计出来。厉害哈。如图11所示,蓝色的虚线框表示卷积后获得的feature map,黑色实线框表示ROI feature,最后需要输出的大小是2x2,那么我们就利用双线性插值来估计这些蓝点(虚拟坐标点,又称双线性插值的网格点)处所对应的像素值,最后得到相应的输出。这些蓝点是2x2Cell中的随机采样的普通点,作者指出,这些采样点的个数和位置不会对性能产生很大的影响,你也可以用其它的方法获得。然后在每一个橘红色的区域里面进行max pooling或者average pooling操作,获得最终2x2的输出结果。我们的整个过程中没有用到量化操作,没有引入误差,即原图中的像素和feature map中的像素是完全对齐的,没有偏差,这不仅会提高检测的精度,同时也会有利于实例分割。这么细心,做科研就应该关注细节,细节决定成败.

图11 双线性插值

4、损失函数

LclsLbox与Faster R-CNN的定义类似,这里主要看Lmask

 

掩膜分支针对每个RoI产生一个Km2的输出,即K个分辨率为m×m的二值的掩膜,KK为分类物体的种类数目。依据预测类别分支预测的类型i,只将第i的二值掩膜输出记为Lmask。

掩膜分支的损失计算如下示意图:

  1. mask branch 预测K个种类的m×m二值掩膜输出
  2. 依据种类预测分支(Faster R-CNN部分)预测结果:当前RoI的物体种类为i
  3. 第i个二值掩膜输出就是该RoI的损失Lmask

计算损失的时候只计算这个

 

3、算法流程

       首先,输入一幅你想处理的图片,然后进行对应的预处理操作,或者预处理后的图片;

然后,将其输入到一个预训练好的神经网络中(ResNeXt等)获得对应的feature map;

接着,对这个feature map中的每一点设定预定个的ROI,从而获得多个候选ROI;

接着,将这些候选的ROI送入RPN网络进行二值分类(前景或背景)和BB回归,过滤掉一部分候选的ROI;(当然这里可以换成FPN)

接着,对这些剩下的ROI进行ROIAlign操作(即先将原图和feature map的pixel对应起来,然后将feature map和固定的feature对应起来);

       最后,对这些ROI进行分类(N类别分类)、BB回归和MASK生成(在每一个ROI里面进行FCN操作)。

 

三、附录

1. 实例分割(Instance segmentation)和语义分割(Semantic segmentation)的区别与联系

联系:语义分割和实例分割都是目标分割中的两个小的领域,都是用来对输入的图片做分割处理;

区别:

1.  通常意义上的目标分割指的是语义分割,语义分割已经有很长的发展历史,已经取得了很好地进展,目前有很多的学者在做这方面的研究;然而实例分割是一个从目标分割领域独立出来的一个小领域,是最近几年才发展起来的,与前者相比,后者更加复杂,当前研究的学者也比较少,是一个有研究空间的热门领域,如图1所示,这是一个正在探索中的领域;

 

 

 

参考

https://blog.csdn.net/wzz18191171661/article/details/79453780

http://hellodfan.com/2017/11/08/Keras%E5%AE%9E%E7%8E%B0Mask-R-CNN/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值