初级算法梳理
dh待续
道阻且长
展开
-
01算法梳理1-线性回归
线性回归梳理1.基础概念1.1监督学习1.2无监督学习1.3泛化能力1.4过拟合与欠拟合1.5交叉验证2.线性回归原理3.线性回归函数3.1损失函数3.2代价函数3.3目标函数4.优化方法4.1梯度下降4.1牛顿法4.1拟牛顿法5.评估指标6.sklean参数详解1.基础概念1.1监督学习监督学习通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型,使模型能够对任意给定的...原创 2019-03-01 22:00:03 · 260 阅读 · 0 评论 -
03算法梳理3-决策树
1.信息论基础熵 联合熵 信息增益 基尼不纯度2.决策树分类算法ID3 C4.5 CART分类树3.回归树原理4.决策树防止过拟合手段5.模型评估6.sklearn参数详解,Python绘制决策树https://www.zhihu.com/question/22178202...原创 2019-03-05 21:36:55 · 315 阅读 · 0 评论 -
02算法梳理2-逻辑回归
1.逻辑回归与线性回归的联系与区别1.1联系两者都属与广义线性回归模型。1.2区别线性回归要求变量服从正态分布,逻辑回归对变量分布没有要求。线性回归要求因变量是连续性数值变量,而逻辑回归要求因变量是分类型变量。线性回归要求自变量和因变量呈线性关系,而逻辑回归不要求自变量和因变量呈线性关系逻辑回归是分析因变量取某个值的概率与自变量的关系,而线性回归是直接分析因变量与自变量的关系2...原创 2019-03-03 21:54:03 · 309 阅读 · 0 评论