自然语言处理基础技术之语义角色标注实战

nlpnet语义角色标注

安装:pip install nlpnet

国内源安装:pip install nlpnet -i https://pypi.tuna.tsinghua.edu.cn/simple

1.nlpnet是一个基于神经网络的自然语言处理任务的Python库。 目前,它支持词性标注、依存分析以及语义角色标记。

2.首先要下载预训练模型:http://nilc.icmc.usp.br/nlpnet/models.html#srl-portuguese 目前语义角色标注只提供了葡萄牙语的预训练模型

import nlpnet

tagger = nlpnet.SRLTagger('nlpnet-model\srl-pt', language='pt')
sents = tagger.tag(u'O rato roeu a roupa do rei de Roma.')[0]
sents.arg_structures


[('roeu',
  {'A0': ['O', 'rato'],
   'A1': ['a', 'roupa', 'do', 'rei', 'de', 'Roma'],
   'V': ['roeu']})]

pyltp语义角色标注

pyltp安装有点麻烦-.-,这里记录window 10下的安装方法

1.首先,pip install pyltp安装报错:error: command ‘C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\BIN\x86_amd64\cl.exe’ failed with exit status 2

安装cmake,下载地址,https://cmake.org/download/

安装VS2008 EXPRESS,下载网址:https://visualstudio.microsoft.com/zh-hans/vs/express/

2.然后,我选择使用python setup.py install安装 - 下载pyltp,地址:https://github.com/hit-scir/pyltp - 下载ltp,地址:https://github.com/hit-scir/ltp - 解压ltp,然后将解压之后文件命名为ltp,覆盖pyltp文件夹中的ltp - 打开cmd,进入到pyltp目录下,找到setup.py - 先执行命令:python setup.py build - 然后执行命令:python setup.py install

使用里面的预训练模型,需要先下载,然后指定相应目录

下载地址:http://ltp.ai/download.html

要先进行分词,词性标注,依存分析

sentence = "我爱自然语言处理技术!"

from pyltp import Segmentor
seg = Segmentor() #生成对象
seg.load("pyltp-model\ltp_data_v3.4.0\cws.model") #加载分词预训练模型
seg_words = seg.segment(sentence)print(" ".join(seg_words))
seg.release() #释放资源

我 爱 自然 语言 处理 技术 !

from pyltp import Postagger  
pos=Postagger()#加载词性预训练模型
pos.load("pyltp-model\ltp_data_v3.4.0\pos.model")
words_pos=pos.postag(seg_words)
for k,v in zip(seg_words, words_pos):
    print(k+'\t'+v)pos.release()


我   r
爱   v
自然  n
语言  n
处理  v
技术  n
!   wp

from pyltp import Parser
parser=Parser()parser.load("pyltp-model\ltp_data_v3.4.0\parser.model")
arcs=parser.parse(seg_words,words_pos)
print([(arc.head,arc.relation) for arc in arcs])
parser.release()


[(2, 'SBV'), (0, 'HED'), (4, 'ATT'), (5, 'FOB'), (2, 'VOB'), (5, 'VOB'), (2, 'WP')]


from pyltp import SementicRoleLabeller
labeller = SementicRoleLabeller()
labeller.load("pyltp-model\ltp_data_v3.4.0\pisrl_win.model")
roles = labeller.label(seg_words,words_pos,arcs)
for role in roles:
    print(role.index, "".join(
        ["%s:(%d,%d)" % (arg.name, arg.range.start, arg.range.end) for arg in role.arguments]))
labeller.release()


1 A0:(0,0)A1:(2,5)
4 A1:(5,5)

另外,代码我已经上传github:https://github.com/yuquanle/StudyForNLP/blob/master/NLPbasic/SRL.ipynb

欢迎关注【AI小白入门】,这里分享Python、机器学习、深度学习、自然语言处理、人工智能等技术,关注前沿技术,求职经验等,陪有梦想的你一起成长。
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值