方法一
首先从头节点开始,依次遍历单链表的每一个节点。每遍历到一个新节点,就从头节点重新遍历新节点之前的所有节点,用新节点ID和此节点之前所有节点ID依次作比较。如果发现新节点之前的所有节点当中存在相同节点ID,则说明该节点被遍历过两次,链表有环;如果之前的所有节点当中不存在相同的节点,就继续遍历下一个新节点,继续重复刚才的操作。
例如这样的链表:A->B->C->D->B->C->D, 当遍历到节点D的时候,我们需要比较的是之前的节点A、B、C,不存在相同节点。这时候要遍历的下一个新节点是B,B之前的节点A、B、C、D中恰好也存在B,因此B出现了两次,判断出链表有环。
假设从链表头节点到入环点的距离是D,链表的环长是S。那么算法的时间复杂度是0+1+2+3+…+(D+S-1) = (D+S-1)(D+S)/2 , 可以简单地理解成 O(NN)。而此算法没有创建额外存储空间,空间复杂度可以简单地理解成为O(1)。
方法二
首先创建一个以节点ID为键的HashSet集合,用来存储曾经遍历过的节点。然后同样是从头节点开始,依次遍历单链表的每一个节点。每遍历到一个新节点,就用新节点和HashSet集合当中存储的节点作比较,如果发现HashSet当中存在相同节点ID,则说明链表有环,如果HashSet当中不存在相同的节点ID,就把这个新节点ID存入HashSet,之后进入下一节点,继续重复刚才的操作。
这个方法在流程上和方法一类似,本质的区别是使用了HashSet作为额外的缓存。
假设从链表头节点到入环点的距离是D,链表的环长是S。而每一次HashSet查找元素的时间复杂度是O(1), 所以总体的时间复杂度是1*(D+S)=D+S,可以简单理解为O(N)。而算法的空间复杂度还是D+S-1,可以简单地理解成O(N)。
方法三
首先创建两个指针1和2(在java里就是两个对象引用),同时指向这个链表的头节点。然后开始一个大循环,在循环体中,让指针1每次向下移动一个节点,让指针2每次向下移动两个节点,然后比较两个指针指向的节点是否相同。如果相同,则判断出链表有环,如果不同,则继续下一次循环。
例如链表A->B->C->D->B->C->D,两个指针最初都指向节点A,进入第一轮循环,指针1移动到了节点B,指针2移动到了C。第二轮循环,指针1移动到了节点C,指针2移动到了节点B。第三轮循环,指针1移动到了节点D,指针2移动到了节点D,此时两指针指向同一节点,判断出链表有环。
此方法也可以用一个更生动的例子来形容:在一个环形跑道上,两个运动员在同一地点起跑,一个运动员速度快,一个运动员速度慢。当两人跑了一段时间,速度快的运动员必然会从速度慢的运动员身后再次追上并超过,原因很简单,因为跑道是环形的。
假设从链表头节点到入环点的距离是D,链表的环长是S。那么循环会进行S次(为什么是S次,有心的同学可以自己揣摩下),可以简单理解为O(N)。除了两个指针以外,没有使用任何额外存储空间,所以空间复杂度是O(1)。