机器学习
文章平均质量分 90
向光性
这个作者很懒,什么都没留下…
展开
-
基于vgg19模型的 style transfer
一、导读。 图片风格转换,最初是由Gatys在2015年发表的“A Neural Algorithm of Artistic Style”这篇论文中提出。该论文构建了一个无监督的学习网络,输入两张图片(一张内容图,一张风格图),经过训练输出一张带有内容图内容且带有风格图风格的新图片。这篇博客就是写了我自己对这片论文的实现。代码地址(neural style文件夹):点击打开链接二、原理原创 2018-02-07 18:51:38 · 3001 阅读 · 2 评论 -
基于SRCNN的表情包超分辨率(附tensorflow实现)
SRCNN原理 如上图所示,SRCNN作为深度学习在超分辨率上的第一个应用,仅仅用了简单的三层CNN(但是效果已经很好了),原作者将这三层分别表示为: 第一层CNN:对输入图片的特征提取。(9 x 9 x 64卷积核) 第二层CNN:对第一层提取的特征的非线性映射(1 x 1 x 35卷积核) 第三层CNN:对映射后的特征进行重建,生成高分辨率图像(5 x 5 ...原创 2018-02-25 14:04:05 · 11249 阅读 · 38 评论