之前学python的时候就看见过metaclass的文章,没看懂,那篇博客后面说到,metaclass是python的黑魔法99% 不会用到。于是果断放弃。
不过最近看flask-WTForm组建的源码,一开始就是metaclass。没办法,硬着头皮重新看metaclass。基本了解,现在总结如下:
一、metaclass干嘛的?
metaclass是指定类由谁创建。能够定制类的创建过程
指定类由谁创建的???开什么玩笑,类不是由'我'创建的吗????
python中一切皆对象,类也是对象,类是由type类创建。
我们写下如下代码时:
class Foo(object):
pass
实际上,解释器将其解释为:
Foo = type('Foo', (object,), {})
type()的三个参数:'Foo':类名; (object, ): 类的继承关系,用元组表示; {}: 类的字段,方法。
以上是类的默认创建方法。由type创建。python也给我们提供了自定义类的创建的方法,即metaclass。type也是类,它可以创建类,因此我们叫它元类,不要过分纠结这是什么鬼,知道type类可以创建类就行。
自定义类的创建过程,那就得写一个像type一样可以创建类的类,那简单,继承就可以办到。
方式一:
class MyType(type):
def __new__(cls, *args, **kwargs):
print('MyType __new__')
return super().__new__(cls, *args, **kwargs)
def __init__(cls, *args, **kwargs):
print('MyTpye __init__')
super().__init__(*args, **kwargs)
def __call__(cls, *args, **kwargs):
print('MyTpye __call__')
super().__call__(cls, *args, **kwargs)
class Foo(metaclass=MyType):
pass
这样,解释器解释到class Foo(...)的时候,就会转换为:
Foo = MyType('Foo', (object,), {})
方式二:
class MyType(type):
def __new__(cls, *args, **kwargs):
print('MyType __new__')
return super().__new__(cls, *args, **kwargs)
def __init__(cls, *args, **kwargs):
print('MyTpye __init__')
super().__init__(*args, **kwargs)
def __call__(cls, *args, **kwargs):
print('MyTpye __call__')
super().__call__(cls, *args, **kwargs)
def with_meta(meta, Base):
return meta('Foo', (Base, ), {})
class Foo(with_meta(MyType, object)):
pass
这样解释的时候,与方式一的一样。
二、创建类与类实例化时执行过程是怎样的?
解释器解释到class的定义语句时,会先在class中寻找是否指定自定义的'MyType', 没有再往父类找是否指定,没有再在本模块中找,是否本模块指定了统一的'MyType', 若均没有,则用默认的type创建。
解释到class Foo(...)时,会调用'MyType'的__new__, __init__方法。生成类。
解释到f = Foo() ,类的实例化时,会调用'MyType'的__call__方法,而'type'的__call__方法又会去调用Foo的__new__, __init__实例化类对象。
下面用一个实际的例子来说明元类的使用方法
三、ORM的元类实例:
#ORM:object relational mapping 对象-关系映射
#把关系数据库的一行映射为一个对象,也就是一个类对应一个表
#ORM框架所有的类只能动态定义
# 定义Field(定义域:元类遇到Field的方法或属性时即进行修改)
class Field(object):
def __init__(self, name, column_type): # column==>列类型
self.name = name
self.column_type = column_type
# 当用print打印输出的时候,python会调用他的str方法
# 在这里是输出<类的名字,实例的name参数(定义实例时输入)>
# 在ModelMetaclass中会用到
def __str__(self):
return "<%s:%s>" % (self.__class__.__name__, self. name) # __class__获取对象的类,__name__取得类名
# 进一步定义各种类型的Field
class StringField(Field):
def __init__(self, name):
# super(type[, object-or-type]) 返回type的父类对象
# super().__init()的作用是调用父类的init函数
# varchar(100)和bigint都是sql中的一些数据类型
super(StringField, self).__init__(name, "varchar(100)")
class IntegerField(Field):
def __init__(self, name):
super(IntegerField, self).__init__(name, "bigint")
# 编写ModelMetaclass
class ModelMetaclass(type):
# __new__方法接受的参数依次是:
# 1.当前准备创建的类的对象(cls)
# 2.类的名字(name)
# 3.类继承的父类集合(bases)
# 4.类的方法集合(attrs)
def __new__(cls, name, bases, attrs):
# 如果说新创建的类的名字是Model,那直接返回不做修改
if name == "Model":
return type.__new__(cls, name, bases, attrs)
print("Found model:%s" % name)
mappings = dict()
for k, v in attrs.items():
if isinstance(v, Field):
print("Found mappings:%s ==> %s" % (k, v)) # 找到映射, 这里用到上面的__str__
mappings[k] = v
# 结合之前,即把之前在方法集合中的零散的映射删除,
# 把它们从方法集合中挑出,组成一个大方法__mappings__
# 把__mappings__添加到方法集合attrs中
for k in mappings.keys():
attrs.pop(k)
attrs["__mappings__"] = mappings
attrs["__table__"] = name # 添加表名,假设表名与类名一致
return type.__new__(cls, name, bases, attrs)
# 编写Model基类继承自dict中,这样可以使用一些的方法
class Model(dict, metaclass=ModelMetaclass):
def __init__(self, **kw):
# 调用父类,即dict的初始化方法
super(Model, self).__init__(**kw)
# 让获取key的值不仅仅可以d[k],也可以d.k
def __getattr__(self, key):
try:
return self[key]
except KeyError:
raise AttributeError(r"'Model' object has no attribute '%s'" % key)
# 允许动态设置key的值,不仅仅可以d[k],也可以d.k
def __setattr__(self, key, value):
self[key] = value
def save(self):
fields = []
params = []
args = []
# 在所有映射中迭代
for k, v in self.__mappings__.items():
fields.append(v.name)
params.append("?")
args.append(getattr(self, k, None))
sql = "insert into %s (%s) values (%s)" % (self.__table__, ",".join(fields), ",".join(params))
print("SQL: %s" % sql)
print("ARGS: %s" % str(args))
# 这样一个简单的ORM就写完了# 下面实际操作一下,先定义个User类来对应数据库的表Userclass User(Model): # 定义类的属性到列的映射 id = IntegerField("id") name = StringField("username") email = StringField("email") password = StringField("password")# 创建一个实例u = User(id=12345, name="ReedSun", email="sunhongzhao@foxmail.com", password="nicaicai")u.save()
上面的代码按功能可以分为三部分:
1. 定义属性
class Field(object):
pass
# 进一步定义各种类型的Field
class StringField(Field):
pass
class IntegerField(Field):
pass
2. 操作属性:
# 编写ModelMetaclass
class ModelMetaclass(type):
def __new__(cls, name, bases, attrs):
pass
# 编写Model基类继承自dict中,这样可以使用一些的方法
class Model(dict, metaclass=ModelMetaclass):
def __init__(self, **kw):
# 调用父类,即dict的初始化方法
super(Model, self).__init__(**kw)
# 让获取key的值不仅仅可以d[k],也可以d.k
def __getattr__(self, key):
pass
# 允许动态设置key的值,不仅仅可以d[k],也可以d.k
def __setattr__(self, key, value):
self[key] = value
def save(self):
pass
# 下面实际操作一下,先定义个User类来对应数据库的表User
class User(Model):
# 定义类的属性到列的映射
id = IntegerField("id")
name = StringField("username")
email = StringField("email")
password = StringField("password")
3. 统管属性:
u = User(id=12345, name="ReedSun", email="sunhongzhao@foxmail.com", password="nicaicai")
u.save()
代码执行流程:
解释器执行到 class Model 时,知道其指定了由 ModelMetaclass创建。因此,解释(不是执行)完类内定义的方法后,跳进 ModelMetaclass 的 __new__(cls, name, base, attrs), ModelMetaclass 没有__init__,执行type的__init__。(由于是生成Model, __new__(cls, name, base, attrs)中的clc为Model) 至此Model类正式创建完毕。
解释器执行到class User 时,与上面一样, 解释完类内定义的 id, name, email , password 字段后(这些字段均为...Field对象),跳进ModelMetaclass 的 __new__(cls, name, base, attrs),此时 cls 为 User, name 为 'User', base 为 Model, attrs 为类似{'id': IntegerField("id"), 'name':StringField("username"),.........}的字典。
建议最好自己设置断点,调式执行看看,就会明白执行流程是怎么样的。
四、定制类生成的好处:
当然是非常多的,最容易理解的,单例模式便可以用 metaclass来实现。其他的好处,如ORM,我还说不上来,等弄清楚再补充。
参考与推荐博文:
https://blog.csdn.net/weixin_35955795/article/details/52985170