模拟退火算法

本文来自论文《模拟退火算法综述》–谢云。

1. 问题由来

在自然科学、 管理科学和工程技术等科技领域, 存在着大量的组合优化问题(Combinatorialoptimiza- tion Problem),其中的NP完全问题(Nondeterministie polynomialComplete problem), 其求解时间随问题规 模呈指数级增长, 当规模稍大时就会因时间限制而失去可行 (Feasibility)。 如著名的货郎担问题 (TravelingSalesman Problem,简记为TSP),即在n 个顶点的完全图中找一条最小 Hamliton 回路 , 当图为 对称图时, 要从(n一1!) /2 个可能解中找出最优者, 需进行(n, 1)! /2一1次比较, 若用每秒运算一亿次的计 算机,n=10时只需0. 0018秒,n=20 就需19年,n =30时则猛增为1. 4X1015年。 显然,如此求其精确解是不可行的 。为解决这类问题, 人们提出了许多近似算法, 但这些算法或因过于注意个别问题的特征 而缺乏通用性, 或因所得解强烈地依赖初始解的选取而缺乏实用 性。模拟退火算法(SimulatedAnnealingAlgorithm)就 是对其中的局部搜索算法(Loeal Sea reh Algo rithm) 改进而提出的。

2. 模拟退火算法

模拟退火算法提出于本世纪 80 年代初, 其思想源于固体退火过程: 将固体加温至充分高, 再让其徐徐冷却。 加温时, 固体内部粒子随温升变为无序状, 内能增 大, 而徐徐冷却时粒子渐趋有序, 在每个温度都达到平 衡态, 最后在常温时达到基态 , 内能减为最小。 根据 MterooPlis准则,粒子在温度T时趋于平衡的几率为 e一△E/(kT,其中E为温度T时的内能,△E为其改变 量, k 为Boltzman 常数。

用固体退火模拟组合优化问题, 将内能 E 模拟为 目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法。由初始解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值