230. Kth Smallest Element in a BST(C++ 和 Java)

解题思路一:O(n)

利用二叉搜索树BST的特性,左子树值都小于根节点,右子树值大于根节点,所以使用中序遍历,当遍历到第k个节点就是第k个最小的节点。以下代码依然遍历了整个BST,有兴趣的同学可以修改一下,遍历到第k个节点就结束,可以提高算法效率。

class Solution {
public:
    int result;
    int t = 0;
    
    void inTraverse(TreeNode* node, int k){         //中序遍历
        if(node != NULL){
            inTraverse(node->left, k);
            if(++t == k){
                result = node->val;
                return;
            }
            inTraverse(node->right, k);
        }
        return;
    }
    
    int kthSmallest(TreeNode* root, int k) {
        inTraverse(root, k);
        return result;
    }
};

 解题思路二:O(nlog(n))

较为朴素的想法。先序遍历BST,将其值存在List中,再调用排序算法,返回第k个元素,主要时间都用在排序上了。

class Solution {
    List<Integer> value = new ArrayList<>();
    
    void preTraverse(TreeNode node){         //先序遍历
        if(node != null){
            value.add(node.val);
            preTraverse(node.left);
            preTraverse(node.right);
        }
        return;
    }
    
    public int kthSmallest(TreeNode root, int k) {
        preTraverse(root);
        Collections.sort(value);
        return value.get(k - 1);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值