- 博客(3)
- 收藏
- 关注
原创 快速块匹配的非局部均值去噪算法_Fast Block Matching Non local means
大家都知道,NL-means去噪算法很大的缺陷就是它的运算速度太慢,故,我采取一种快速块匹配对之进行了改进function [posIdx, weiIdx] = BM_NL_means_test(Img,par)% Img : 输入图像% posIdx : 与中心块相似的块的位置索引% weiIdx : 与中心块相似的块的权重索引search_r = par.s_r; %se
2017-03-26 22:40:25 3030 1
原创 给图像加入高斯白噪声
%给图像加上高斯白噪声I=imread('timg.jpg');figure,imshow(I);%显示原图I_gray = rgb2gray(I);%将原图转换为灰度图figure,imshow(I_gray);%显示灰度图I_gray_copy = im2double(I_gray);%图像数据类型转换为double类型%产生高斯白噪声方法一:randnnoise=0.2*ran
2017-02-27 10:47:07 11146 1
原创 patch matching 图像块匹配算法
入实验室后,我读的第一篇paper是:Needle-Match: Reliable Patch Matching under High Uncertainty,其中涉及到了patch相似度匹配,作为一个新人我对此没有任何基础,我完全不懂如何匹配出相似的patch,当时在网上也没有找到说的很清楚的参考资料,经过两周的学习和matlab仿真,我简单讲讲如何找出一幅图中相似的p块和q块,这都是很简单的知识,仅仅献给初学者(若有错误欢迎指正):在一幅512*512的灰度图中,以3x3的patch为例,在全图匹配
2017-02-26 21:58:45 23688 4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人