编写一个算法来判断一个数是不是“快乐数”。
一个“快乐数”定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是无限循环但始终变不到 1。如果可以变为 1,那么这个数就是快乐数。
示例:
输入: 19
输出: true
解释:
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1
方法一:
当出现重复数字时(!=1),就肯定不是快乐数了。
所以可以用哈希集来存储每次出现的数字(不是1的时候),然后如果在循环的时候等于1了,就返回true;如果找到了之前出现过的数字,就说明不可能为快乐数,就返回false。代码如下:
class Solution {
public:
bool isHappy(int n) {
unordered_set<int>hashset;
int sum=0;
while(true){
while(n>0){
sum=sum+(n%10)*(n%10);
n=n/10;
}
if(sum==1)return true;
if(hashset.count(sum))return false;
hashset.insert(sum);
n=sum;
sum=0;
}
}
};
运行时间和内存消耗如下:
方法二:
从百度上看到这样总结的规律:
不是快乐数的数称为不快乐数(unhappy number),所有不快乐数的数位平方和计算,最後都会进入 4 → 16 → 37 → 58 → 89 → 145 → 42 → 20 → 4 的循环中。
可以将不快乐数排除了。