1. 索引定义
首先什么是索引,索引就是排好序的快速查找数据结构。索引的出现就是为了提高查询效率,索引的概念比较抽象,就像书的目录一样,通过目录可以很快的找到对应的章节,但是提高查询的同时也会增加一定的维护成本,在实际应用场景中,其实也是一个取舍的过程。
2. 索引数据结构
缩印的出现就是为了提高查询效率,实现索引的数据结构有很多,这里介绍下常见的三种简单的高效读写的数据结构,它们分别是哈希表,有序数组和搜索树。
哈希表是一种以键-值(key-value)存储数据的结构,我们只要输入待查找的值即key,就可以找到其对应的值即Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置。不可避免的多个key经过hash函数换算出现同一个位置的情况,也就是hash碰撞或者hash冲突,解决办法再hash,拉链法,也就是再哈希冲突的位置链化,hash冲突解决了,新的问题又出现了,链化过长的时候导致查询效率降低,树化,超过一定阈值链表转化成红黑树,虽然经过一系列方案解决了新的问题,但是性能上带来了一定的损耗,所以哈希表种种结构更适用于等值查询的场景,比如Memcached等。
而有序数组则适用于静态数据,比如你要查询2020年全国人口信息,这类数据不会在修改,只用于统计操作。
二叉搜索树是非常经典的数据结构了,比如根据身份证号查询名字,如果采用二叉搜索树来实现的话,示意图如下,
二叉搜索树的特点是:左子树小于根节点,根节点小于右子树。
这样如果你要查user2的话,按照图中的搜索顺序就是按照UserA ->UserC->UserF ->User2这个路径得到。这个时间复杂度是O(log(N))。当然为了维持O(log(N))的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是O(log(N))。
树可以有二叉,也可以有多叉,也就是平衡多路搜索树,就是B+树,mysql innoDB的索引存储结构。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上。
你可以想象一下一棵100万节点的平衡二叉树,树高20。一次查询可能需要访问20个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要10 ms左右的寻址时间。也就是说,对于一个100万行的表,如果使用二叉树来存储,单独访问一个行可能需要20个10 ms的时间,这个查询可真够慢的。
为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N叉”树。这里,“N叉”树中的“N”取决于数据块的大小,以InnoDB的一个整数字段索引为例,这个N差不多是1200。这棵树高是4的时候,就可以存1200的3次方个值,这已经17亿了。考虑到树根的数据块总是在内存中的,一个10亿行的表上一个整数字段的索引,查找一个值最多只需要访问3次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。
N叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中了。不管是哈希还是有序数组,或者N叉树,它们都是不断迭代、不断优化的产物或者解决方案。数据库技术发展到今天,跳表、LSM树等数据结构也被用于引擎设计中,这里我就不再一一展开了。
数据库底层存储的核心就是基于这些数据模型的。每碰到一个新数据库,我们需要先关注它的数据模型,这样才能从理论上分析出这个数据库的适用场景。在分析问题的时候会经常用到。当你理解了索引的模型后,就会发现在分析问题的时候会有一个更清晰的视角,体会到引擎设计的精妙之处。
3. InnoDB索引模型
在MySQL中,索引是在存储引擎层实现的,所以并没有统一的索引标准,即不同存储引擎的索引的工作方式并不一样。而即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。
在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB使用了B+树索引模型,所以数据都是存储在B+树中的。每一个索引在InnoDB里面对应一棵B+树。假设,我们有一个主键列为ID的表,表中有字段k,并且在k上有索引。
mysql> create table T(
id int primary key,
k int not null,
name varchar(16),
index (k))engine=InnoDB;
表中R1~R5的(ID,k)值分别为(100,1)、(200,2)、(300,3)、(500,5)和(600,6),两棵树的示例示意图如下。
从图中不难看出,主键索引也就是聚簇索引叶子结点存储的是整行数据,而非主键索引或者非聚簇索引的叶子结点存储的是主键索引的位置,这也就是为什么通过主键索引查询效率高于非主键索引的原因,二级索引需要回表才能获取到对应的整行数据,但是如果查询的字段包含在索引字段内,就会避免回表带来的效率低问题。也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。
4. 索引维护
B+树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上面这个图为例,如果插入新的行ID值为700,则只需要在R5的记录后面插入一个新记录。如果新插入的ID值为400,就相对麻烦了,需要逻辑上挪动后面的数据,空出位置。
而更糟的情况是,如果R5所在的数据页已经满了,根据B+树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。
除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约50%。当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。合并的过程,可以认为是分裂过程的逆过程。
你可能在一些建表规范里面见到过类似的描述,要求建表语句里一定要有自增主键。当然事无绝对,我们来分析一下哪些场景下应该使用自增主键,而哪些场景下不应该。
自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOTNULL PRIMARYKEY AUTO_INCREMENT。插入新记录的时候可以不指定ID的值,系统会获取当前ID最大值加1作为下一条记录的ID值。也就是说,自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。而有业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高。
除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?
由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约20个字节,而如果用整型做主键,则只要4个字节,如果是长整型(bigint)则是8个字节。显然,主键长度越小,普通索引的叶子结点就越小,普通索引占用的空间也就越小。所以,从性能和存储空间方面考量,自增逐渐往往是更合理的选择。
有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样
的:
- 只有一个索引;
- 该索引必须是唯一索引。
你一定看出来了,这就是典型的KV场景。
由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树。
5. 覆盖索引
在下面这个表T中,如果我执行 select *fromTwhere k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行?
mysql> create table T (
ID int primary key,
k int NOT NULL DEFAULT 0,
s varchar(16) NOT NULL DEFAULT '',
index k(k))
engine=InnoDB;
insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');
现在,我们一起来看看这条SQL查询语句的执行流程:
- 在k索引树上找到k=3的记录,取得 ID = 300;
- 再到ID索引树查到ID=300对应的R3;
- 在k索引树取下一个值k=5,取得ID=500;
- 再回到ID索引树查到ID=500对应的R4;
- 在k索引树取下一个值k=6,不满足条件,循环结束。
在这个过程中,回到主键索引树搜索的过程,我们称为回表回 。可以看到,这个查询过程读了k索引树的3条记录(步骤1、3和5),回表了两次(步骤2和4)。
在这个例子中,由于查询结果所需要的数据只在主键索引上有,所以不得不回表。那么,有没有可能经过索引优化,避免回表过程呢?
覆盖索引,所谓的覆盖索引就是查询的字段包含在索引字段内,避免回表。比如执行的语句是select ID fromTwhere k between 3 and 5,这时只需要查ID的值,而ID的值已经在k索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引k已经“覆盖了”我们的查询需求,我们称为覆盖索引。由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用 由的性能优化手段。
需要注意的是,在引擎内部使用覆盖索引在索引k上其实读了三个记录,R3~R5(对应的索引k上的记录项),但是对于MySQL的Server层来说,它就是找引擎拿到了两条记录,因此MySQL认为扫描行数是2。
6. 最左前缀原则
最左前缀的意思是联合索引情况下,联合索引的索引顺序与条件字段的顺序一致,比如用户表中查询条件是name,age,如果为每一个字段创建索引有点浪费,这个时候可以创建联合索引,B+B 树这种索引结构,可以利用索引的 树 “最左前缀 最 ”,来定位记录。
可以看到,索引项是按照索引定义里面出现的字段顺序排序的。
当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到ID4,然后向后遍历得到所有
需要的结果。如果你要查的是所有名字第一个字是“张”的人,你的SQL语句的条件是"where name like‘张%’"。这时,你也能够用上这个索引,查找到第一个符合条件的记录是ID3,然后向后遍历,直到不满足条件为止。可以看到,不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左N个字段,也可以是字符串索引的最左M个字符。
基于上面对最左前缀索引的说明,我们来讨论一个问题:在建立联合索引的时候,如何安排索在引内的字段顺序。 引这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了(a,b)这个联合索引后,一般就不需要单独在a上建立索引了。因此,第一原则是,如果通过调整顺序,可第以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。 以所以现在你知道了,这段开头的问题里,我们要为高频请求创建(身份证号,姓名)这个联合索引,并用这个索引支持“根据身份证号查询地址”的需求。
那么,如果既有联合查询,又有基于a、b各自的查询呢?查询条件里面只有b的语句,是无法使用(a,b)这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护(a,b)、(b) 这两个索引。这时候,我们要考虑的原则就是空间 考 了。比如上面这个市民表的情况,name字段是比age字段大的 ,那我就建议你创建一个(name,age)的联合索引和一个(age)的单字段索引。
7. 索引下推
上一段我们说到满足最左前缀原则的时候,最左前缀可以用于在索引中定位记录。这时,你可能要问,那些不符合最左前缀的部分,会怎么样呢?
我们还是以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是10岁的所有男孩”。那么,SQL语句是这么写的:
mysql> select * from tuser where name like '张%' and age=10 and ismale=1;
你已经知道了前缀索引规则,所以这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录ID3。当然,这还不错,总比全表扫描要好。然后呢?当然是判断其他条件是否满足。
在MySQL 5.6之前,只能从ID3开始一个个回表。到主键索引上找出数据行,再对比字段值。
而MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。
这两个过程的执行流程图ruxia,每一个虚线箭头表示回表一次。
对比两个执行流程不难看出,第一个无索引下推的回表4次,有索引下推的回表2次,索引下推减少了回表次数,提高了查询效率。
8. 索引查询
数据常见的一些参数,比如库大小,表大小,索引大小等指标有助于我们了解数据库,更好的使用数据库及优化。以下是索引查询两种方式。
1.工具查看
2.命令查看
-- 数据库 mysql 库表以及索引大小查询
-- 查看指定库的大小
SELECT CONCAT(ROUND(SUM(DATA_LENGTH/1024/1024),2),'MB') AS DATA FROM TABLES WHERE table_schema='testschema';
-- 查看指定库的指定表的大小
SELECT CONCAT(ROUND(SUM(DATA_LENGTH/1024/1024),2),'MB') AS DATA FROM TABLES WHERE table_schema='testschema' AND table_name='t_syt_keyword_off_rep';
-- 查看指定库的索引大小
SELECT CONCAT(ROUND(SUM(index_length)/(1024*1024), 2), ' MB') AS 'Total Index Size' FROM TABLES WHERE table_schema = 'testschema';
-- 查看指定库的指定表的索引大小
SELECT CONCAT(ROUND(SUM(index_length)/(1024*1024), 2), ' MB') AS 'Total Index Size' FROM TABLES WHERE table_schema = 'testschema' AND table_name='tab_user';
-- 1.查看指定库数据和索引大小总和
SELECT CONCAT(ROUND(SUM((data_length+index_length)/1024/1024),2),'MB') AS total_data FROM information_schema.TABLES WHERE table_schema = 'testschema';
-- 2.查看所有库数据和索引大小总和
SELECT CONCAT(ROUND(SUM((data_length+index_length)/1024/1024),2),'MB') AS total_data FROM information_schema.TABLES;
-- 3.查看指定数据库的某个表
SELECT CONCAT(ROUND(SUM((data_length+index_length)/1024/1024),2),'MB') AS DATA FROM TABLES WHERE table_schema='testschema' AND table_name='tab_user';
-- 4.查询一个库中每个表的数据大小,索引大小和总大小
SELECT
CONCAT(a.table_schema,'.',a.table_name),
CONCAT(ROUND(table_rows/1000,4),'KB') AS 'Number of Rows',
CONCAT(ROUND(data_length/(1024*1024),4),',') AS 'data_size',
CONCAT(ROUND(index_length/(1024*1024),4),'M') AS 'index_size',
CONCAT(ROUND((data_length+index_length)/(1024*1024),4),'M') AS'Total'
FROM
information_schema. TABLES a
WHERE
a.table_schema = 'testschema';