MySQL事务隔离与行锁的关系
1. MySQL事务隔离
MySQL事务详解
MySQL事务详解中介绍了事务隔离相关概念原理,如果是可在重复读隔离级别,事务T启动的时候会创建一个视图read-view,之后事务T在执行期间,即使有其他事务修改了数据,事务T看到的仍然跟在启动时看到的一样,也就是说,一个在可重复度隔离级别下执行的事务,是不受其他事务影响的。
2. MySQL行锁
3. 事务隔离问题
在MySQL行锁的时候,如果有其他事务未提交,那么该事务又会被锁住无法获取锁而进入等待状态,那么等到这个事务获取到行锁更新数据的时候,他读到的值是上一个事务更新过的数据还是更新之前的数据呢?
创建测试表
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`k` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t(id, k) values(1,1),(2,2);
获取事务以及执行流程
这里,我们需要注意的是事务的启动时机。begin/start transaction 命令并不是一个事务的起点,在执行到它们之后的第一个操作InnoDB表的语句,事务才真正启动。如果你想要马上启动一个事务,可以使用start transaction withconsistent snapshot 这个命令。
还需要注意的是,例子中如果没有特别说明,都是默认autocommit=1。
在这个例子中,事务C没有显式地使用begin/commit,表示这个update语句本身就是一个事务,语句完成的时候会自动提交。事务B在更新了行之后查询; 事务A在一个只读事务中查询,并且时间顺序上是在事务B的查询之后。这时,如果我告诉你事务B查到的k的值是3,而事务A查到的k的值是1,你是不是感觉有点晕呢?
在MySQL里,有两个“视图”的概念:
一个是view。它是一个用查询语句定义的虚拟表,在调用的时候执行查询语句并生成结果。创建视图的语法是create view…,而它的查询方法与表一样。
另一个是InnoDB在实现MVCC时用到的一致性读视图,即consistent read view,用于支持RC(Read Committed,读提交)和RR(Repeatable Read,可重复读)隔离级别的实现。
快照在MVCC里工作原理
在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的。
这时,你会说这看上去不太现实啊。如果一个库有100G,那么我启动一个事务,MySQL就要拷贝100G的数据出来,这个过程得多慢啊。可是,我平时的事务执行起来很快啊。实际上,我们并不需要拷贝出这100G的数据。我们先来看看这个快照是怎么实现的。InnoDB里面每个事务有一个唯一的事务ID,叫作transaction id。它是在事务开始的时候向InnoDB的事务系统申请的,是按申请顺序严格递增的。
而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把transaction id赋值给这个数据版本的事务ID,记为rowtrx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。也就是说,数据表中的一行记录,其实可能有多个版本(row),每个版本有自己的rowtrx_id。
图中虚线框里是同一行数据的4个版本,当前最新版本是V4,k的值是22,它是被transaction id为25的事务更新的,因此它的rowtrx_id也是25。你可能会问,前面的文章不是说,语句更新会生成undo log(回滚日志)吗?那么,undo log在哪呢? 在实际上,图2中的三个虚线箭头,就是undo log;而V1、V2、V3并不是物理上真实存在的,而是每次需要的时候根据当前版本和undo log计算出来的。比如,需要V2的时候,就是通过V4依次执行U3、U2算出来。明白了多版本和rowtrx_id的概念后,我们再来想一下,InnoDB是怎么定义那个“100G”的快照的。
按照可重复读的定义,一个事务启动的时候,能够看到所有已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见。因此,一个事务只需要在启动的时候声明说,“以我启动的时刻为准,如果一个数据版本是在我启动之前生成的,就认;如果是我启动以后才生成的,我就不认,我必须要找到它的上一个版本。当然,如果“上一个版本”也不可见,那就得继续往前找。还有,如果是这个事务自己更新的数据,它自己还是要认的。
在实现上, InnoDB为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务ID。“活跃”指的就是,启动了但还没提交。数组里面事务ID的最小值记为低水位,当前系统里面已经创建过的事务ID的最大值加1记为高水位。这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。而数据版本的可见性规则,就是基于数据的rowtrx_id和这个一致性视图的对比结果得到的。这个视图数组把所有的rowtrx_id 分成了几种不同的情况。
这样,对于当前事务的启动瞬间来说,一个数据版本的rowtrx_id,有以下几种可能:
- 如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;
- 如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
- 如果落在黄色部分,那就包括两种情况
a. 若 rowtrx_id在数组中,表示这个版本是由还没提交的事务生成的,不可见;
b. 若 rowtrx_id不在数组中,表示这个版本是已经提交了的事务生成的,可见。
你看,有了这个声明后,系统里面随后发生的更新,是不是就跟这个事务看到的内容无关了呢?
因为之后的更新,生成的版本一定属于上面的2或者3(a)的情况,而对它来说,这些新的数据版本是不存在的,所以这个事务的快照,就是“静态”的了。所以你现在知道了,InnoDB I 利用了 利 “所有数据都有多个版本 所 ”的这个特性,实现了 的 “秒级创建 秒快照快 ”的能力。
从图中可以看到,第一个有效更新是事务C,把数据从(1,1)改成了(1,2)。这时候,这个数据的最新版本的rowtrx_id是102,而90这个版本已经成为了历史版本。第二个有效更新是事务B,把数据从(1,2)改成了(1,3)。这时候,这个数据的最新版本(即rowtrx_id)是101,而102又成为了历史版本。你可能注意到了,在事务A查询的时候,其实事务B还没有提交,但是它生成的(1,3)这个版本已经变成当前版本了。但这个版本对事务A必须是不可见的,否则就变成脏读了。好,现在事务A要来读数据了,它的视图数组是[99,100]。当然了,读数据都是从当前版本读起的。
查询逻辑
所以,事务A查询语句的读数据流程是这样的:
找到(1,3)的时候,判断出rowtrx_id=101,比高水位大,处于红色区域,不可见;
接着,找到上一个历史版本,一看rowtrx_id=102,比高水位大,处于红色区域,不可见;
再往前找,终于找到了(1,1),它的rowtrx_id=90,比低水位小,处于绿色区域,可见。
这样执行下来,虽然期间这一行数据被修改过,但是事务A不论在什么时候查询,看到这行数据的结果都是一致的,所以我们称之为一致性读。
这个判断规则是从代码逻辑直接转译过来的,但是正如你所见,用于人肉分析可见性很麻烦。
所以,我来给你翻译一下。一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:
- 版本未提交,不可见;
- 版本已提交,但是是在视图创建后提交的,不可见;
- 版本已提交,而且是在视图创建前提交的,可见。
现在,我们用这个规则来判断图4中的查询结果,事务A的查询语句的视图数组是在事务A启动的时候生成的,这时候:
(1,3)还没提交,属于情况1,不可见;
(1,2)虽然提交了,但是是在视图数组创建之后提交的,属于情况2,不可见;
(1,1)是在视图数组创建之前提交的,可见。
更新逻辑
可能有疑问了:事务事 B的update u 语句,如果按照一致性读,好像结果不对哦?
你看图5中,事务B的视图数组是先生成的,之后事务C才提交,不是应该看不见(1,2)吗,怎么能算出(1,3)来?
是的,如果事务B在更新之前查询一次数据,这个查询返回的k的值确实是1。但是,当它要去更新数据的时候,就不能再在历史版本上更新了,否则事务C的更新就丢失了。因此,事务B此时的set k=k+1是在(1,2)的基础上进行的操作。所以,这里就用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的 更值,称为 值 “当前读 当 ”(current read )。)
因此,在更新的时候,当前读拿到的数据是(1,2),更新后生成了新版本的数据(1,3),这个新版本的rowtrx_id是101。所以,在执行事务B查询语句的时候,一看自己的版本号是101,最新数据的版本号也是101,是自己的更新,可以直接使用,所以查询得到的k的值是3。
这里我们提到了一个概念,叫作当前读。其实,除了update语句外,select语句如果加锁,也是当前读。所以,如果把事务A的查询语句select *fromt where id=1修改一下,加上lock in share mode 或for update,也都可以读到版本号是101的数据,返回的k的值是3。下面这两个select语句,就是分别加了读锁(S锁,共享锁)和写锁(X锁,排他锁)。
mysql> select k from t where id=1 lock in share mode;
mysql> select k from t where id=1 for update;
再往前一步,假设事务C不是马上提交的,而是变成了下面的事务C’,会怎么样呢?
事务C’的不同是,更新后并没有马上提交,在它提交前,事务B的更新语句先发起了。前面说过了,虽然事务C’还没提交,但是(1,2)这个版本也已经生成了,并且是当前的最新版本。那么,事务B的更新语句会怎么处理呢?
这时候,我们在上一篇文章中提到的“两阶段锁协议”就要上场了。事务C’没提交,也就是说(1,2)这个版本上的写锁还没释放。而事务B是当前读,必须要读最新版本,而且必须加锁,因此就被锁住了,必须等到事务C’释放这个锁,才能继续它的当前读。
到这里,我们把一致性读、当前读和行锁就串起来了。
现在,我们再回到文章开头的问题:事务的可重复读的能力是怎么实现的? 事可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。而读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:
在可重复读隔离级别下,只需要在事务开始的时候创建一致性视图,之后事务里的其他查询都共用这个一致性视图;
在读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图。
那么,我们再看一下,在读提交隔离级别下,事务A和事务B的查询语句查到的k,分别应该是多少呢?
这时,事务A的查询语句的视图数组是在执行这个语句的时候创建的,时序上(1,2)、(1,3)的生成时间都在创建这个视图数组的时刻之前。但是,在这个时刻:
(1,3)还没提交,属于情况1,不可见;
(1,2)提交了,属于情况3,可见。
所以,这时候事务A查询语句返回的是k=2,事务B查询结果k=3。