AlphaGo Zero原理浅析

AlphaGo Zero在《Mastering the game of Go without human knowledge》论文中介绍,与AlphaGo相比,它仅使用一个强化学习网络,整合了policy和value网络,并采用残差卷积网络。其算法核心仍基于MCTS,包括Select、Expand and evaluate、Backup和Training四个步骤,通过这些步骤不断优化决策和价值评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AlphaGo Zero

论文:《Mastering the game of Go without human knowledge》

AlphaGo与AlphaGo Zero主要有以下几点不同:

  • AlphaGo中用了3个policy network,AlphaGo Zero只用了一个reinforcement learning network
  • AlphaGo Zero将policy network,value network合并
  • AlphaGo Zero中没有Monte Carlo rollout
  • AlphaGo Zero的RL network用了残差卷积网络
Reinforcement Learning Network

  在AlphaGo Zero中只用了一个network,同时输出了action probability和value.输入是当前状态,即将当前棋盘图片输入。network用的是残差卷积网络,加了batch normalization和非线性激活函数。

fθ=(p,v)
loss=(zv)2πTlogp+c||θ||2

骨架

  AlphaGo Zero的骨架同样是MCTS.

  树上每一个节点表示状态s,边表示(s,a),每条边存储 { N(s,a),W(s,a),Q(s,a),P(s,a)} , N(s,a) 表示被访问次数, W(s,a) 表示总的action value, Q(s,a)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值