原题:http://acm.hdu.edu.cn/showproblem.php?pid=6395
分析:题意是给一个了数列递推式,问第n项取模的值。这道题的范围很大所以没法使用直接跑循环地推的方法求第n项,很容易就能分析出应该转化成矩阵的方法,然后使用矩阵快速密来求解第n项的值。题目给的递推式是一个非线性的关系,所以一开始就想转化成线性关系然后再将转移矩阵求出来,但是这道题没法转化成线性关系直接得到转移矩阵,因此只能根据p/n的值来分段求,因为p/n对于不同的连续的n在一段范围内是一样,因此就可以转化成Fn = C*Fn-2+D*Fn-1+K(K是常数)这样的线性表达式,然后就是分段使用矩阵快速密,最后得到结果。
ac代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
int a, b, c, d, p, n, t;
struct mat{
int m[3][3];
mat(){
memset(m, 0, sizeof(mat));
}
friend mat operator*(mat a, mat b){
mat c;
for(int i=0; i<3; i++){
for(int j=0; j<3; j++){
ll t = 0;
for(int k=0; k<3; k++){
t += (ll)a.m[i][k]*b.m[k][j];
}
c.m[i][j] = t%mod;
}
}
return c;
}
}I;
mat pow_mat(mat a, int b){
mat c = I;
while(b){
if(b&1){
c = c*a;
}
a = a*a;
b >>= 1;
}
return c;
}
int main(){
I.m[0][0] = I.m[1][1] = I.m[2][2] = 1;
scanf("%d", &t);
while(t--){
scanf("%d%d%d%d%d%d", &a, &b, &c, &d, &p, &n);
if(n == 1){
printf("%d\n", a);
continue;
}
mat f;
f.m[0][0] = d;
f.m[0][1] = c;
f.m[1][0] = 1;
f.m[2][2] = 1;
int flag = 0;
for(int i=3; i<=n;){
if(p/i == 0){
mat w = f;
w = pow_mat(w, n-i+1);
ll ans = w.m[0][0]*(ll)b%mod + w.m[0][1]*(ll)a + w.m[0][2]%mod;
ans %= mod;
printf("%lld\n", ans);
flag = 1;
break;
}
int j = min(n, p/(p/i));
mat w = f;
w.m[0][2] = p/i;
w = pow_mat(w, j-i+1);
ll tmp1 = (w.m[1][0]*(ll)b + w.m[1][1]*(ll)a + w.m[1][2]) % mod;
ll tmp2 = (w.m[0][0]*(ll)b + w.m[0][1]*(ll)a + w.m[0][2]) % mod;
a = tmp1; b = tmp2;
i = j+1;
}
if(!flag)
printf("%d\n", b);
}
}