HDU-6395-Sequence (矩阵快速密, 加整数分块)

9 篇文章 0 订阅

原题:http://acm.hdu.edu.cn/showproblem.php?pid=6395

分析:题意是给一个了数列递推式,问第n项取模的值。这道题的范围很大所以没法使用直接跑循环地推的方法求第n项,很容易就能分析出应该转化成矩阵的方法,然后使用矩阵快速密来求解第n项的值。题目给的递推式是一个非线性的关系,所以一开始就想转化成线性关系然后再将转移矩阵求出来,但是这道题没法转化成线性关系直接得到转移矩阵,因此只能根据p/n的值来分段求,因为p/n对于不同的连续的n在一段范围内是一样,因此就可以转化成Fn = C*Fn-2+D*Fn-1+K(K是常数)这样的线性表达式,然后就是分段使用矩阵快速密,最后得到结果。

ac代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
int a, b, c, d, p, n, t;

struct mat{
	int m[3][3];
	mat(){
		memset(m, 0, sizeof(mat));
	}
	friend mat operator*(mat a, mat b){
		mat c;
		for(int i=0; i<3; i++){
			for(int j=0; j<3; j++){
				ll t = 0;
				for(int k=0; k<3; k++){
					t += (ll)a.m[i][k]*b.m[k][j];
				}
				c.m[i][j] = t%mod;
			}
		}
		return c;
	}	
}I;


mat pow_mat(mat a, int b){
	mat c = I;
	while(b){
		if(b&1){
			c = c*a;
		}
		a = a*a;
		b >>= 1;
	}
	return c;
}

int main(){
	I.m[0][0] = I.m[1][1] = I.m[2][2] = 1;
	scanf("%d", &t);
	while(t--){
		scanf("%d%d%d%d%d%d", &a, &b, &c, &d, &p, &n);
		if(n == 1){
			printf("%d\n", a);
			continue;
		}
		mat f;
		f.m[0][0] = d;
		f.m[0][1] = c;
		f.m[1][0] = 1;
		f.m[2][2] = 1;
		int flag = 0;
		for(int i=3; i<=n;){
			if(p/i == 0){
				mat w = f;			
				w = pow_mat(w, n-i+1);
				ll ans = w.m[0][0]*(ll)b%mod + w.m[0][1]*(ll)a + w.m[0][2]%mod;	
				ans %= mod;
				printf("%lld\n", ans);
				flag = 1;
				break;
			}
			int j = min(n, p/(p/i));
			mat w = f;
			w.m[0][2] = p/i;
			w = pow_mat(w, j-i+1);
			ll tmp1 = (w.m[1][0]*(ll)b + w.m[1][1]*(ll)a + w.m[1][2]) % mod;
			ll tmp2 = (w.m[0][0]*(ll)b + w.m[0][1]*(ll)a + w.m[0][2]) % mod;
			a = tmp1; b = tmp2;
			i = j+1;
		}
		if(!flag)
			printf("%d\n", b);
	}
	
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值