问题:
求【-2,-4,-7,-20,1,1,1,1,-10,1,1,1,5,-10,10,10,10,-25,10,10,10,10,10,10,-300】这一个集合中,求它子集中和为最大的子集以及最大和。
代码实现(求和):
static int maxValue(int[] arr) {
int maxNum = 0;
int positionNum = 0;
for (int i = 0; i < arr.length; i++) {
positionNum += arr[i];
if (positionNum>maxNum) {
maxNum = positionNum;
}
if (positionNum<0) {
positionNum = 0;
}
}
return maxNum;
}
解释说明:
首先我们需要两个变量,一个用来记录最大的和,另一个用来记录位置,当我们加到后一个数的时候与最大值进行比较,如果与当前位置加和大于目前已经有的最大值,那么用该值替换掉最大值。如果与当前位置加和之后小于0,那么截断数组,把当前位置加和设置为0。
代码实现(最大序列):
static String max(int num[]) {
int maxNum = num[0];
int positiveNum = num[0];
if( num[0] <= 0 ) positiveNum = 0;
String positiveStr = "";
String maxStr = "";
for(int i = 1 ;i < num.length ; i++) {
positiveStr += " "+num[i]+",";
positiveNum += num[i];
if( positiveNum > maxNum ) {
maxNum = positiveNum;
maxStr = positiveStr;
}
if( positiveNum < 0 ) {
positiveNum = 0;
positiveStr = "";
}
}
return maxStr;
}
解释说明:
在上边我们求出了最大子列和之后,我们需要解决的问题就是如何在知道最大子列和的时候,同时能够记录到它的对应子列,在这个算法中,我们使用String类型的字符串来表示最后返回的子列,我们需要有两个变量,一个用来记录当前子列,另一个用来记录最长子列,当我们求出最大子列和的时候,同时把当前的子列赋值给最大子列,这样我们就能把子列完整的输出来了