最优化算法总结

本文为SIGAI 2018/8/22最优化算法总结的直播笔记。

目录

总结图片:

1、精确求解(公式求解)

2 数值优化算法

2.1 梯度下降法

2.1.1 动量项

2.1.2 自适应学习率法

         AdaGrad

         RMSProp

         AdaDelta

         Adam

         随机梯度下降

2.2 牛顿法

3 分治法

3.1 坐标下降法

3.2 SMO算法

3.3 分阶段优化法


总结图片:

1、精确求解(公式求解)

一共分为三种:费马定理→拉格朗日乘数法→KKT条件

2 数值优化算法

2.1 梯度下降法

有两种调整方法——加入动量项自适应学习率法

2.1.1 动量项

动量项展开后(累计了之前所有的梯度):

2.1.2 自适应学习率法

AdaGrad

RMSProp

AdaDelta

前两种方法还都用了人工的学习率α,替换掉了人工学习率α后:

Adam

随机梯度下降

2.2 牛顿法

3 分治法

将一个大问题分解成子问题求解,最后将子问题拼接起来

3.1 坐标下降法

3.2 SMO算法

(下图中C是惩罚因子)

3.3 分阶段优化法

上图中:先固定β,优化f;再固定f,优化β

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值