本文为SIGAI 2018/8/22最优化算法总结的直播笔记。
目录
总结图片:
1、精确求解(公式求解)
一共分为三种:费马定理→拉格朗日乘数法→KKT条件
2 数值优化算法
2.1 梯度下降法
有两种调整方法——加入动量项和自适应学习率法
2.1.1 动量项
动量项展开后(累计了之前所有的梯度):
2.1.2 自适应学习率法
AdaGrad
RMSProp
AdaDelta
前两种方法还都用了人工的学习率α,替换掉了人工学习率α后:
Adam
随机梯度下降
2.2 牛顿法
3 分治法
将一个大问题分解成子问题求解,最后将子问题拼接起来
3.1 坐标下降法
3.2 SMO算法
(下图中C是惩罚因子)
3.3 分阶段优化法
上图中:先固定β,优化f;再固定f,优化β