可视化学习:作业1 ——Grid and Interpolation 网格和插值

这篇博客是作者在KTH学习Visualization课程的作业,主要内容包括网格(Grid)和插值(Interpolation)的理论与应用。第一题讨论了坐标方程与坐标系的区别,解释了如何根据方向和单元大小确定坐标。第二题涉及证明,作者给出了解答。第三题与第一题类似,第四题和前两题一样是插值问题,但考虑了不同边界条件。第五题探讨了三角形插值,介绍了线性插值和Shepard插值两种方法,其中Shepard插值的权重计算较为复杂。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 本文为我在KTH学习Visualization这门课的作业,涉及到的知识点我在这篇笔记有记录。课程简介链接在这儿
  • 由于本文是在国外发布的,在国内阅读文章时可能会出现没有图片的现象,目前我还没有找到好的解决办法,好像CSDN就是这样。所以解决办法就是翻墙~

第一题

这道题目最主要的问题时何为coordinate function(坐标方程)。坐标方程和坐标系方程是不一样的……我们需要用x,y,z方向的indices(i,j,k,也可以理解为某点在各个方向上取几个格子(cell))乘上每个格子的大小(cell size,在三个方向上分别是dx, dy, dz),来表示这个网格坐标内任意一点的坐标,因为有三个方向,则坐标方程应该是三个式子。当坐标系建的不同时有不同的答案。

公式为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值