做法:与UVA11426的原理相同,这里就不细说了,因为几乎一模一样。这个题让我们求满足1<=x,y<=n 在[1,n] 这个区间里面gcd(x,y) = 素数的个数
所以我们可以打一个素数表,去枚举它们的倍数的n 来求满足 gcd(x/i,y/i) = 1 的x/i的个数有phi[y/i] 个 (i是质数)
当x/i == y/i 的时候就是phi[y/i] 个,否则要乘2,比如gcd(4,2) gcd(2,4) 这样的
代码:
#include<bits/stdc++.h>
#define rep(i,s,t) for(int i = (int)(s); i <= (int)(t); i++)
#define rev(i,t,s) for(int i = (int)(t); i >= (int)(s); i--)
#define pb(x) push_back(x)
#define all(x) x.begin(),x.end()
#define sz(x) (int)(x).size()
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
const double PI = 4*atan(1.0);
const int maxn = 1e7+5;
const int INF = 0x3f3f3f3f;
int phi[maxn],prime[maxn];
ll s[maxn];
ll num[maxn];
int tot;
void phi_table(int N)//线性筛法欧拉函数表
{
phi[1] = 1;
for(int i=2;i<=N;i++){
if(!phi[i]){
phi[i] = i-1;
prime[tot++] = i;
}
for(int j=0;j<tot && 1LL*i*prime[j]<=N;j++){
if(i%prime[j]) phi[i*prime[j]] = phi[i]*(prime[j]-1);
else{
phi[i*prime[j]] = phi[i]*prime[j];
break;
}
}
}
}
void init(int N)
{
int k = 0;
for(int i=prime[k];i<=N && k<tot;i = prime[++k])
{
for(int n=i;n<=N;n+=i)
{
if(n == i)
num[n] += phi[n/i];
else
num[n] += phi[n/i]*2;
}
}
s[2] = num[2];
for(int i=3;i<=N;i++)
s[i] = s[i-1]+num[i];
}
int main()
{
#ifdef LOCAL_FILE
freopen("in.txt","r",stdin);
#endif // LOCAL_FILE
// ios_base::sync_with_stdio(0);
// cin.tie(0),cout.tie(0);
int n;
//ll ans = 0;
scanf("%d",&n);
phi_table(n);
init(n);
printf("%lld\n",s[n]);
return 0;
}
当然这个题可以优化前缀和。
还及得前面UVA11426我们是竖着(分类)求的
这次我们可以横着求,会发现,就不用,用质数i去更新它的倍数的数
用sum[i] 表示 欧拉函数的前缀和
我们发现ans 就是,就是用n枚举n以为所有素数因子的欧拉函数前缀和的 和
即sum[i] = sum[i-1]+phi[i]
ans = ans+sum[n/prime[j]]*2-1
多余x!=y, 应该 * 2,对于x == y就直接算1次 题中给的样例说的很清楚,gcd(4,2) gcd(2,4) 算两个
sum[n/prime[j]] = phi[1/prime[j]]+phi[2/prime[j]]+phi[3/prime[j]]+……phi[n/prime[j]];
优化后的代码:
#include<bits/stdc++.h>
#define rep(i,s,t) for(int i = (int)(s); i <= (int)(t); i++)
#define rev(i,t,s) for(int i = (int)(t); i >= (int)(s); i--)
#define pb(x) push_back(x)
#define all(x) x.begin(),x.end()
#define sz(x) (int)(x).size()
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
const double PI = 4*atan(1.0);
const int maxn = 1e7+5;
const int INF = 0x3f3f3f3f;
int phi[maxn],prime[maxn];
ll s[maxn];
int tot;
void phi_table(int N)//线性筛法欧拉函数表
{
phi[1] = 1;
for(int i=2;i<N;i++){
if(!phi[i]){
phi[i] = i-1;
prime[tot++] = i;
}
for(int j=0;j<tot && 1LL*i*prime[j]<N;j++){
if(i%prime[j]) phi[i*prime[j]] = phi[i]*(prime[j]-1);
else{
phi[i*prime[j]] = phi[i]*prime[j];
break;
}
}
}
for(int i=1;i<N;i++){
s[i] = s[i-1]+phi[i];
}
}
int main()
{
#ifdef LOCAL_FILE
freopen("in.txt","r",stdin);
#endif // LOCAL_FILE
// ios_base::sync_with_stdio(0);
// cin.tie(0),cout.tie(0);
int n;
ll ans = 0;
scanf("%d",&n);
phi_table(n);
for(int i=0;i<tot;i++)
ans = ans+s[n/prime[i]]*2-1;
printf("%lld\n",ans);
return 0;
}