[BZOJ](2818)Gcd ---- 欧拉函数★

题目链接

做法:UVA11426的原理相同,这里就不细说了,因为几乎一模一样。这个题让我们求满足1<=x,y<=n 在[1,n] 这个区间里面gcd(x,y) = 素数的个数

所以我们可以打一个素数表,去枚举它们的倍数的n 来求满足 gcd(x/i,y/i) = 1 的x/i的个数有phi[y/i] 个 (i是质数)

当x/i == y/i 的时候就是phi[y/i] 个,否则要乘2,比如gcd(4,2) gcd(2,4) 这样的

代码:

#include<bits/stdc++.h>
#define rep(i,s,t) for(int i = (int)(s); i <= (int)(t); i++)
#define rev(i,t,s) for(int i = (int)(t); i >= (int)(s); i--)
#define pb(x) push_back(x)
#define all(x) x.begin(),x.end()
#define sz(x) (int)(x).size()
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
const double PI = 4*atan(1.0);
const int maxn = 1e7+5;
const int INF = 0x3f3f3f3f;
int phi[maxn],prime[maxn];
ll s[maxn];
ll num[maxn];
int tot;
void phi_table(int N)//线性筛法欧拉函数表
{
    phi[1] = 1;
    for(int i=2;i<=N;i++){
        if(!phi[i]){
            phi[i] = i-1;
            prime[tot++] = i;
        }
        for(int j=0;j<tot && 1LL*i*prime[j]<=N;j++){
            if(i%prime[j]) phi[i*prime[j]] = phi[i]*(prime[j]-1);
            else{
                phi[i*prime[j]] = phi[i]*prime[j];
                break;
            }
        }
    }
}
void init(int N)
{
    int k = 0;
    for(int i=prime[k];i<=N && k<tot;i = prime[++k])
    {
        for(int n=i;n<=N;n+=i)
        {
            if(n == i)
                num[n] += phi[n/i];
            else
                num[n] += phi[n/i]*2;
        }
    }
    s[2] = num[2];
    for(int i=3;i<=N;i++)
        s[i] = s[i-1]+num[i];
}
int main()
{
    #ifdef LOCAL_FILE
    freopen("in.txt","r",stdin);
    #endif // LOCAL_FILE
//    ios_base::sync_with_stdio(0);
//    cin.tie(0),cout.tie(0);
    int n;
    //ll ans = 0;
    scanf("%d",&n);
    phi_table(n);
    init(n);
    printf("%lld\n",s[n]);
    return 0;
}

当然这个题可以优化前缀和。

还及得前面UVA11426我们是竖着(分类)求的

这次我们可以横着求,会发现,就不用,用质数i去更新它的倍数的数

用sum[i] 表示 欧拉函数的前缀和

我们发现ans 就是,就是用n枚举n以为所有素数因子的欧拉函数前缀和的  和

即sum[i] = sum[i-1]+phi[i]

ans = ans+sum[n/prime[j]]*2-1

多余x!=y, 应该 * 2,对于x == y就直接算1次 题中给的样例说的很清楚,gcd(4,2) gcd(2,4) 算两个

sum[n/prime[j]] = phi[1/prime[j]]+phi[2/prime[j]]+phi[3/prime[j]]+……phi[n/prime[j]];

优化后的代码:

#include<bits/stdc++.h>
#define rep(i,s,t) for(int i = (int)(s); i <= (int)(t); i++)
#define rev(i,t,s) for(int i = (int)(t); i >= (int)(s); i--)
#define pb(x) push_back(x)
#define all(x) x.begin(),x.end()
#define sz(x) (int)(x).size()
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
const double PI = 4*atan(1.0);
const int maxn = 1e7+5;
const int INF = 0x3f3f3f3f;
int phi[maxn],prime[maxn];
ll s[maxn];
int tot;
void phi_table(int N)//线性筛法欧拉函数表
{
    phi[1] = 1;
    for(int i=2;i<N;i++){
        if(!phi[i]){
            phi[i] = i-1;
            prime[tot++] = i;
        }
        for(int j=0;j<tot && 1LL*i*prime[j]<N;j++){
            if(i%prime[j]) phi[i*prime[j]] = phi[i]*(prime[j]-1);
            else{
                phi[i*prime[j]] = phi[i]*prime[j];
                break;
            }
        }
    }
    for(int i=1;i<N;i++){
        s[i] = s[i-1]+phi[i];
    }
}
int main()
{
    #ifdef LOCAL_FILE
    freopen("in.txt","r",stdin);
    #endif // LOCAL_FILE
//    ios_base::sync_with_stdio(0);
//    cin.tie(0),cout.tie(0);
    int n;
    ll ans = 0;
    scanf("%d",&n);
    phi_table(n);
    for(int i=0;i<tot;i++)
        ans = ans+s[n/prime[i]]*2-1;
    printf("%lld\n",ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值