Hive 基础知识

Hive数据仓库

什么是数据仓库

Data Warehouse (DW 或者 DWH);嗯可以理解为数据库概念上的升级。数据仓库本身并不生产数据,也不消费数据。

解决的需求是 容量更多的数据

目的 构建面向分析的集成化数据环境,为企业提供决策支持

ETL

Extract:数据的抽取;将数据从原数据中抽取出来

Transform:数据的转换;按照一定的格式对数据进行格式转换

Load:数据的加载;把格式化的数据进行加载到目标处(这里可以理解为hive的加载流程)

Hive的基础理解

是一个基于Hadoop上的数据仓库框架,将结构化的数据文件映射成为一张表,并提供类SQL的查询功能。

本质是:将HQL转化成MapReduce程序

hive是一个框架,本身并不具备存储、计算能力。这些能力都是依赖Hadoop中的HDFS以及MapReduce

Hive 的特点

操作采用了类SQL语言,简单容易上手

避免了去写MapReduce,从而减少了开发人员学习成本

Hive执行的延迟性比较高,通常用于数据分析,对实时性要求不高的场合

Hive在处理批量大数据的时候有优势,处理小量数据没有优势

Hive支持用户自定义函数(继承UDF类),拓展比较方便

Hive 和数据库的对比

结构上:Hive和数据库除了拥有类似的查询功能,并无其它类似的地方。

存储位置:Hive存储在HDFS中;数据库是存放到本地文件中。

数据更新:Hive不支持数据的改和添加,所有的数据都是在加载的时候确定的;数据库可以修改操作。

执行:Hive通过MapReduce执行;数据库通过自己的执行引擎进行执行

执行效率:跟数据规模有关,数据规模比较大的时候,Hive执行速度比较快;数据规模比较小,数据库完胜Hive

扩展性:Hive是基于Hadoop的,几乎拥有Hadoop所有的扩展性;数据库扩展的能力是有限的

数据规模:Hive基于Hadoop的框架,而Hadoop又是一个集群框架,HDFS又是一个海量数据存储的文件系统;数据库只有一个小量的存储系统

Hive的架构

底层结构:HDFS+MapReduce

Hive server:驱动器 :解释器+编译器+优化器+执行器+Hive Metastore(Mysql、Oracle等关系型数据库)

用户接口:shell 、JDBC(ODBC等数据库驱动)、WebUI(基于Java等语言开发的Web界面)

Hive Metastore 部署方式:

  • embedded:几乎不用的方式。使用默认的derby 数据库,仅仅支持一个链接
  • local:单机环境下使用方式。metastore 与 hive部署在同一台主机,元数据存储在其他关系型数据库中(Mysql等)
  • remote:集群下的使用方式。metastore与hive部署在不同的主机,通信方式使用HTTP的底层协议——thrift。

Hive的部署(详细寻找其他文章)

Hive的连接方式(默认已经配置了环境)

  1. 直接使用 hive命令(废弃的方式,不建议使用)
  2. 使用 beeline 方式连接
    1、使用 beeline 命令
    2、执行 !connect jdbc:hive2://192.168.3.11:10000
    3、输入 拥有权限的用户名及其密码(具体的信息,参照 Hadoop 中的 core-site.xml 配置)

     

 

 

### 回答1: Hive是一个基于Hadoop的数据仓库工具,它提供了一种类似SQL的查询语言,用于将结构化数据存储在Hadoop集群上,并进行查询和分析。下面是一些关于Hive基础知识的选择题: 1. Hive的主要特点是什么? a) 提供类似SQL的查询语言 b) 可以在Hadoop集群上进行数据存储和分析 c) 可以处理结构化和半结构化数据 d) 所有选项都正确 答案:d) 所有选项都正确 2. Hive数据存储在哪里? a) HBase b) Hadoop Distributed File System (HDFS) c) Cassandra d) MySQL 答案:b) Hadoop Distributed File System (HDFS) 3. Hive中的表可以与以下哪种文件格式关联? a) CSV b) JSON c) Parquet d) 所有选项都正确 答案:d) 所有选项都正确 4. Hive使用什么来对数据进行分区和排序? a) HDFS b) Tez c) MapReduce d) Apache Spark 答案:c) MapReduce 5. Hive中的数据查询和分析通过什么来实现? a) Hive Query Language (HQL) b) Structured Query Language (SQL) c) Apache Hive d) Apache Hadoop 答案:a) Hive Query Language (HQL) 总之,Hive是一个基于Hadoop的数据仓库工具,具有类似SQL的查询语言,可以在Hadoop集群上存储和分析结构化和半结构化数据。它使用HDFS来存储数据,可以与多种文件格式关联,并使用MapReduce来进行数据分区和排序。数据查询和分析通过Hive Query Language (HQL)来实现。 ### 回答2: Hive是一款基于Hadoop的数据仓库工具,它提供了方便的数据查询和分析的功能。接下来我将回答一些关于Hive基础知识的选择题。 1. Hive中的表是如何定义的? 答案:C. 使用HiveQL语句创建表。 2. 在Hive中,数据是如何存储的? 答案:B. 在Hadoop的HDFS文件系统中。 3. Hive中的分区是用来做什么的? 答案:A. 对数据进行逻辑上的划分,便于查询优化和数据管理。 4. 在Hive中,可以使用哪种语言进行数据查询? 答案:D. HiveQL。 5. 在Hive中,用来处理复杂逻辑和数据运算的是什么? 答案:B. Hive的UDF(用户定义函数)和UDAF(用户定义聚合函数)。 6. Hive数据存储格式有哪些? 答案:A. 文本文件(TextFile)、序列文件(SequenceFile)和Parquet等。 7. Hive表中的数据可以通过什么方式进行加载? 答案:C. 使用Hive的LOAD DATA语句。 8. 在Hive中,用来创建管理表结构的是什么? 答案:B. Hive的元数据存储。 9. Hive的优势是什么? 答案:C. 简化了对Hadoop数据的查询和分析。 10. 使用Hive时,可以通过什么方式进行数据的导入和导出? 答案:D. 使用Hive的导入和导出命令。 以上是关于Hive基础知识的一些选择题的答案。Hive是一个功能强大且易于使用的工具,可以帮助用户更好地处理和分析大数据。掌握Hive基础知识对于进行数据仓库的建设和数据分析工作非常重要。 ### 回答3: Hive是一个开源的数据仓库基础架构,运行在Hadoop集群上。以下是关于Hive基础知识选择题的回答: 1. Hive中的数据存储在哪里? 答:Hive中的数据存储在Hadoop分布式文件系统(HDFS)中。 2. Hive中的数据是如何组织的? 答:Hive中的数据是以表(Tables)的形式进行组织的。 3. Hive中的表的结构是如何定义的? 答:Hive中的表的结构是通过DDL语句来定义的,包括表的名称、列名称、数据类型等信息。 4. Hive中的查询语言是什么? 答:Hive中的查询语言类似于SQL,称为HiveQL或HQL。 5. Hive中的查询语句是如何转换为MapReduce作业的? 答:Hive将查询语句转换为逻辑查询计划,然后将逻辑查询计划转换为物理查询计划,最后将物理查询计划转换为MapReduce作业。 6. Hive中的分区表是什么? 答:Hive中的分区表是按照一个或多个列的值分成不同的目录,并且每个目录下存储相应分区的数据。 7. Hive中的桶是什么? 答:Hive中的桶是将数据分成固定数量的文件的一种方式,目的是提高查询性能。 8. Hive中的内部表和外部表有什么区别? 答:内部表的数据和元数据都由Hive管理,删除内部表时会删除表的数据;而外部表的数据和元数据存储在外部的文件系统中,删除外部表时只会删除元数据。 9. Hive中的UDF是什么? 答:UDF全称为用户定义函数(User-Defined Functions),是由用户自定义的用于特定数据处理操作的函数。 10. Hive中的压缩是如何实现的? 答:Hive中的压缩是通过执行MapReduce作业时将数据进行压缩,以减少数据的存储空间和提高查询性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值