Hive数据仓库
什么是数据仓库
Data Warehouse (DW 或者 DWH);嗯可以理解为数据库概念上的升级。数据仓库本身并不生产数据,也不消费数据。
解决的需求是 容量更多的数据
目的 构建面向分析的集成化数据环境,为企业提供决策支持
ETL
Extract:数据的抽取;将数据从原数据中抽取出来
Transform:数据的转换;按照一定的格式对数据进行格式转换
Load:数据的加载;把格式化的数据进行加载到目标处(这里可以理解为hive的加载流程)
Hive的基础理解
是一个基于Hadoop上的数据仓库框架,将结构化的数据文件映射成为一张表,并提供类SQL的查询功能。
本质是:将HQL转化成MapReduce程序
hive是一个框架,本身并不具备存储、计算能力。这些能力都是依赖Hadoop中的HDFS以及MapReduce
Hive 的特点
操作采用了类SQL语言,简单容易上手
避免了去写MapReduce,从而减少了开发人员学习成本
Hive执行的延迟性比较高,通常用于数据分析,对实时性要求不高的场合
Hive在处理批量大数据的时候有优势,处理小量数据没有优势
Hive支持用户自定义函数(继承UDF类),拓展比较方便
Hive 和数据库的对比
结构上:Hive和数据库除了拥有类似的查询功能,并无其它类似的地方。
存储位置:Hive存储在HDFS中;数据库是存放到本地文件中。
数据更新:Hive不支持数据的改和添加,所有的数据都是在加载的时候确定的;数据库可以修改操作。
执行:Hive通过MapReduce执行;数据库通过自己的执行引擎进行执行
执行效率:跟数据规模有关,数据规模比较大的时候,Hive执行速度比较快;数据规模比较小,数据库完胜Hive
扩展性:Hive是基于Hadoop的,几乎拥有Hadoop所有的扩展性;数据库扩展的能力是有限的
数据规模:Hive基于Hadoop的框架,而Hadoop又是一个集群框架,HDFS又是一个海量数据存储的文件系统;数据库只有一个小量的存储系统
Hive的架构
底层结构:HDFS+MapReduce
Hive server:驱动器 :解释器+编译器+优化器+执行器+Hive Metastore(Mysql、Oracle等关系型数据库)
用户接口:shell 、JDBC(ODBC等数据库驱动)、WebUI(基于Java等语言开发的Web界面)
Hive Metastore 部署方式:
- embedded:几乎不用的方式。使用默认的derby 数据库,仅仅支持一个链接
- local:单机环境下使用方式。metastore 与 hive部署在同一台主机,元数据存储在其他关系型数据库中(Mysql等)
- remote:集群下的使用方式。metastore与hive部署在不同的主机,通信方式使用HTTP的底层协议——thrift。
Hive的部署(详细寻找其他文章)
Hive的连接方式(默认已经配置了环境)
- 直接使用 hive命令(废弃的方式,不建议使用)
- 使用 beeline 方式连接
1、使用 beeline 命令 2、执行 !connect jdbc:hive2://192.168.3.11:10000 3、输入 拥有权限的用户名及其密码(具体的信息,参照 Hadoop 中的 core-site.xml 配置)