数值分析实验(四)之方程求根的数值方法

实验目的

编程实现以下算法:
二分法、Newton迭代法、弦截法求方程根的程序。
二分法对y=x^3-x-1在[1,2]上求解
sy4_1.m

clear;
clc;
c=1;
d=2;
i=0;
while (d-c)>=1e-5
    i=i+1;
    x=0.5*(c+d);
    if x^3-x-1>0
        d=x;
    elseif x^3-x-1<0
        c=x;
    else 
        break;
    end
end
X=fzero('x^3-x-1',1)
x
i

二分法求解结果,X是精确解,x是求得的数值解,i是迭代次数
二分法

牛顿迭代法对y=x^3-x-1在[1,2]上求解
sy4_2.m

clear;
clc;
x0=1;
N=20;
k=1;
X=fzero('x^3-x-1',1)
while k<N
    if 3*x0^2-1==0
        disp('奇异');
        break;
    end
    x1=x0-(x0^3-x0-1)/(3*x0^2-1);
    if abs(x1-x0)<1e-5
        x1
        break;
    else
        k=k+1;
        x0=x1;
    end
end
k

牛顿迭代法求解结果,X是精确解,x1是求得的数值解,k是迭代次数
牛顿迭代法弦截法对y=x^3-x-1在[1,2]上求解
sy4_3.m

clear;
clc;
x0=1;
N=20;
k=1;
x1=x0+0.1;
X=fzero('x^3-x-1',1)
while k<N
    if 3*x1^2-1==0
        disp('奇异');
        break;
    end
    x2=x1-(x1^3-x1-1)/(((x1^3-x1-1)-(x0^3-x0-1))/(x1-x0));
    if abs(x2-x1)<1e-5
        x2
        break;
    else
        k=k+1;
        x1=x2;
    end
end
k

弦截法求解结果,X是精确解,x2是求得的数值解,k是迭代次数
弦截法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值