第四章 并发容器ConcurrentHashMap笔记

本文深入探讨了Java并发容器ConcurrentHashMap的实现,从线程不安全的HashMap到JDK1.7的分段锁机制,再到JDK1.8的数据结构优化。重点分析了JDK1.7的分段锁、初始化、扩容及JDK1.8的红黑树转换,展示了并发环境下如何通过位运算和优化提高性能。
摘要由CSDN通过智能技术生成

HashMap多线程会导致HashMap的Entry链表形成环形数据结构,一旦形成环形数据结构,Entry的next节点永远不为空,就会产生死循环获取Entry。

HashTable使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法,其他线程也访问HashTable的同步方法时,会进入阻塞或轮询状态。如线程1使用put进行元素添加,线程2不但不能使用put方法添加元素,也不能使用get方法来获取元素,所以竞争越激烈效率越低。

putIfAbsent() :没有这个值则放入map,有这个值则返回key本来对应的值。

一、预备知识

1、Hash算法:

散列,哈希:把任意长度的输入通过一种算法(散列),变换成为固定长度的输出,这个输出值就是散列值。属于压缩映射,容易产生哈希冲突。Hash算法有直接取余法等。

产生哈希冲突时解决办法:

  • 开放寻址
  • 再散列
  • 链地址法(相同hash值的元素用链表串起来)

ConcurrentHashMap在发生hash冲突时采用了链地址法。md4,md5,sha-hash算法也属于hash算法,又称摘要算法。
常用hash算法的介绍:
(1) MD4 (2) MD5它对输入仍以512位分组,其输出是4个32位字的级联(3) SHA-1及其他。

2、位运算:

int类型的位
在这里插入图片描述
2的0次方 = 1,2的1次方=2…….,以上表格代表数字 (2的5次方+2的3次方)= 40
由上面的表格可以看出,数字类型在数字渐渐变大时,是由低位慢慢向高位扩展的。
Java实际保存int型时 正数 第31位 =0 负数:第31位=1

常用位运算有:

  • 位与 & (1&1=1 1&0=0 0&0=0)
  • 位或 | (1|1=1 1|0=1 0|0=0)
  • 位非 ~( ~1=0 ~0=1)
  • 位异或 ^ (1^1=0 1^0=1 0^0=0)
  • <<有符号左移 >>有符号的右移 >>>无符号右移 例如:8 << 2 = 32 8>>2 = 2

取模的操作 a % (Math.pow(2,n)) 等价于 a&( Math.pow(2,n)-1)

有趣的取模性质:取模a % (2^n) 等价于 a & (2^n - 1),所以在map里的数组个数一定是2的乘方数,计算key值在哪个元素中的时候,就用位运算来快速定位。

3、位运算运用场景

Java中的类修饰符、成员变量修饰符、方法修饰符,比如Class类中
Java容器中的HashMap和ConcurrentHashMap的实现
权限控制或者商品属性
简单可逆加密,比如异或运算(1^1=0 ; 0^1=1 )
实战:权限控制,com.chj.thread.capt05.bitconvert.Permission
使用位运算的优劣势:
节省很多代码量、效率高、属性变动影响小、不直观

二、线程不安全的HashMap

HashMap 里面是一个数组,然后数组中每个元素是一个单向链表,因为多线程环境下,使用Hashmap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。
Java1.7的HashMap结构:
在这里插入图片描述
上图中,每个绿色的实体是嵌套类 Entry 的实例,Entry 包含四个属性:key, value, hash 值和用于单向链表的 next。

  • capacity:当前数组容量,始终保持 2^n,可以扩容,扩容后数组大小为当前的 2 倍。
  • loadFactor:负载因子,默认为 0.75。
  • threshold:扩容的阈值,等于 capacity * loadFactor

1.术语定义

哈希算法hash algorithm:
是一种将任意内容的输入转换成相同长度输出的加密方式,其输出被称为哈希值。
哈希表hash table:
根据设定的哈希函数H(key)和处理冲突方法将一组关键字映象到一个有限的地址区间上,并以关键字在地址区间中的象作为记录在表中的存储位置,这种表称为哈希表或散列,所得存储位置称为哈希地址或散列地址。

2.put过程分析:

2.1源码分析:

public V put(K key, V value) {
    // 当插入第一个元素的时候,需要先初始化数组大小
    if (table == EMPTY_TABLE) {
        inflateTable(threshold); //capacity * loadFactor
    }
    // 如果 key 为 null,感兴趣的可以往里看,最终会将这个 entry 放到 table[0] 中
    if (key == null)
        return putForNullKey(value);
    // 1. 求 key 的 hash 值
    int hash = hash(key);
    // 2. 找到对应的数组下标
    int i = indexFor(hash, table.length);
    // 3. 遍历一下对应下标处的链表,看是否有重复的 key 已经存在,
    //    如果有,直接覆盖,put 方法返回旧值就结束了
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }
    modCount++;
    // 4. 不存在重复的 key,将此 entry 添加到链表中,细节后面说
    addEntry(hash, key, value, i);
    return null;
}

2.2 数组初始化:

在第一个元素插入 HashMap 的时候做一次数组的初始化,就是先确定初始的数组大小,并计算数组扩容的阈值

private void inflateTable(int toSize) {
    // 保证数组大小一定是 2 的 n 次方。
    // 比如这样初始化:new HashMap(20),那么处理成初始数组大小是 32
    int capacity = roundUpToPowerOf2(toSize);
    // 计算扩容阈值:capacity * loadFactor
    threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
    // 算是初始化数组吧
    table = new Entry[capacity];
    initHashSeedAsNeeded(capacity); //ignore
}

2.3 添加节点到链表中:

找到数组下标后,会先进行 key 判重,如果没有重复,就准备将新值放入到链表的表头。

void addEntry(int hash, K key, V value, int bucketIndex) {
    // 如果当前 HashMap 大小已经达到了阈值,并且新值要插入的数组位置已经有元素了,那么要扩容
    if ((size >= threshold) && (null != table[bucketIndex])) {
        // 扩容,后面会介绍一下
        resize(2 * table.length);
        // 扩容以后,重新计算 hash 值
        hash = (null != key) ? hash(key) : 0;
        // 重新计算扩容后的新的下标
        bucketIndex = indexFor(hash, table.length);
    }
    // 往下看
    createEntry(hash, key, value, bucketIndex);
}
// 这个很简单,其实就是将新值放到链表的表头,然后 size++
void createEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    size++;
}

3.get 过程分析

相对于 put 过程,get 过程是非常简单的。
1)根据 key 计算 hash 值。
2)找到相应的数组下标:hash & (length – 1)。
3)遍历该数组位置处的链表,直到找到相等(==或equals)的 key。

public V get(Object key) {
    // 之前说过,key 为 null 的话,会被放到 table[0],所以只要遍历下 table[0] 处的链表就可以了
    if (key == null)
        return getForNullKey();
    Entry<K,V> entry = getEntry(key);
    return null == entry ? null : entry.getValue();
}
final Entry<K,V> getEntry(Object key) {
    if (size == 0) { return null;}
    int hash = (key == null) ? 0 : hash(key);
    // 确定数组下标,然后从头开始遍历链表,直到找到为止
    for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
        Object k;
        if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
            return e;
    	 }
    	return null;
}

4.效率低下的HashTable容器

HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值