一、什么是慢查询?
慢查询日志,顾名思义,就是查询慢的日志,是指mysql记录所有执行超过long_query_time参数设定的时间阈值的SQL语句的日志。该日志能为SQL语句的优化带来很好的帮助。默认情况下,慢查询日志是关闭的,要使用慢查询日志功能,首先要开启慢查询日志功能。
1、慢查询配置
1.1、慢查询基本配置
slow_query_log 启动停止技术慢查询日志
slow_query_log_file 指定慢查询日志得存储路径及文件(默认和数据文件放一起)
long_query_time 指定记录慢查询日志SQL执行时间得伐值(单位:秒,默认10秒)
log_queries_not_using_indexes 是否记录未使用索引的SQL
log_output 日志存放的地方【TABLE】【FILE】【FILE,TABLE】
配置了慢查询后,它会记录符合条件的SQL
包括:查询语句,数据修改语句,已经回滚得SQL
实操:通过下面命令查看下上面的配置:
show VARIABLES like '%slow_query_log%';
show VARIABLES like '%slow_query_log_file%';
show VARIABLES like '%long_query_time%'; -- 10秒 默认
show VARIABLES like '%log_queries_not_using_indexes%'; -- 默认off
show VARIABLES like 'log_output';
参数设置:
set global long_query_time=0; --- 默认10秒,这里为了演示方便设置为0
set GLOBAL slow_query_log=1; -- 开启慢查询日志
set global log_output='FILE,TABLE'; -- 项目开发中日志只能记录在日志文件中,不能记表中
设置完成后,查询一些列表可以发现慢查询的日志文件里面有数据了。
cat /data1/localhost-slow.log -- 多实例
cat /usr/local/mysql/data/localhost-slow.log -- 单实例
1.2、慢查询解读
从慢查询日志里面摘选一条慢查询日志,数据组成如下:
# User@Host: root[root] @ [192.168.30.199] Id: 21
# Query_time: 0.000078 Lock_time: 0.000000 Rows_sent: 4 Rows_examined: 4
SET timestamp=1561389688;
# administrator command: Init DB;
# Time: 2019-06-24T15:21:28.258812Z
# User@Host: root[root] @ [192.168.30.199] Id: 21
# Query_time: 0.000402 Lock_time: 0.000167 Rows_sent: 8 Rows_examined: 8
SET timestamp=1561389688;
SHOW COLUMNS FROM `hankin`.`t_user`;
慢查询格式显示:
第一行:用户名 、用户的IP信息、线程ID号
第二行:执行花费的时间【单位:毫秒】
第三行:执行获得锁的时间
第四行:获得的结果行数
第五行:扫描的数据行数
第六行:这SQL执行的具体时间
第七行:具体的SQL语句
2、慢查询分析
慢查询的日志记录非常多,要从里面找寻一条查询慢的日志并不是很容易的事情,一般来说都需要一些工具辅助才能快速定位到需要优化的SQL语句,下面介绍两个慢查询辅助工具
2.1、Mysqldumpslow
常用的慢查询日志分析工具,汇总除查询条件外其他完全相同的SQL,并将分析结果按照参数中所指定的顺序输出。
语法:mysqldumpslow -s r -t 10 slocalhost-slow.log
-s order (c,t,l,r,at,al,ar)
c:总次数, t:总时间,l:锁的时间, r:总数据行
at,al,ar :t,l,r平均数 【例如:at = 总时间/总次数】
-t top 指定取前面几天作为结果输出
mysqldumpslow -s t -t 10
cat /data1/localhost-slow.log (多实例路劲)
cat /usr/local/mysql/data/localhost-slow.log
2.1、pt_query_digest
是用于分析mysql慢查询的一个工具,与mysqldumpshow工具相比,py-query_digest 工具的分析结果更具体,更完善。有时因为某些原因如权限不足等,无法在服务器上记录查询,这样的限制我们也常常碰到。
perl的模块:
yum install -y perl-CPAN perl-Time-HiRes
安装步骤:
方法一:rpm安装
cd /usr/local/src
wget percona.com/get/percona-toolkit.rpm
yum install -y percona-toolkit.rpm
工具安装目录在:/usr/bin
方法二:源码安装
cd /usr/local/src
wget percona.com/get/percona-toolkit.tar.gz
tar zxf percona-toolkit.tar.gz
cd percona-toolkit-2.2.19
perl Makefile.PL PREFIX=/usr/local/percona-toolkit
make && make install
工具安装目录在:/usr/local/percona-toolkit/bin
首先来看下一个命令:
yum -y install 'perl(Data::Dumper)';
yum -y install perl-Digest-MD5
yum -y install perl-DBI
yum -y install perl-DBD-MySQL
查看慢查询命令:
perl ./pt-query-digest --explain h=192.168.30.130,u=root,p=root /usr/local/mysql/data/localhost-slow.log
汇总信息【总的查询时间】、【总的锁定时间】、【总的获取数据量】、【扫描的数据量】、【查询大小】
Response: 总的响应时间。
time: 该查询在本次分析中总的时间占比。
calls: 执行次数,即本次分析总共有多少条这种类型的查询语句。
R/Call: 平均每次执行的响应时间。
Item : 查询对象
1)扩展阅读:
语法及重要选项
pt-query-digest [OPTIONS] [FILES] [DSN]
--create-review-table 当使用--review参数把分析结果输出到表中时,如果没有表就自动创建。
--create-history-table 当使用--history参数把分析结果输出到表中时,如果没有表就自动创建。
--filter 对输入的慢查询按指定的字符串进行匹配过滤后再进行分析
--limit 限制输出结果百分比或数量,默认值是20,即将最慢的20条语句输出,如果是50%则按总响应时间占比从大到小排序,输出到总和达到50%位置截止。
--host mysql服务器地址
--user mysql用户名
--password mysql用户密码
--history 将分析结果保存到表中,分析结果比较详细,下次再使用--history时,如果存在相同的语句,且查询所在的时间区间和历史表中的不同,则会记录到数据表中,可以通过查询同一CHECKSUM来比较某类型查询的历史变化。
--review 将分析结果保存到表中,这个分析只是对查询条件进行参数化,一个类型的查询一条记录,比较简单。当下次使用--review时,如果存在相同的语句分析,就不会记录到数据表中。
--output 分析结果输出类型,值可以是report(标准分析报告)、slowlog(Mysql slow log)、json、json-anon,一般使用report,以便于阅读。
--since 从什么时间开始分析,值为字符串,可以是指定的某个”yyyy-mm-dd [hh:mm:ss]”格式的时间点,也可以是简单的一个时间值:s(秒)、h(小时)、m(分钟)、d(天),如12h就表示从12小时前开始统计。
--until 截止时间,配合—since可以分析一段时间内的慢查询。
2)分析pt-query-digest输出结果
第一部分:总体统计结果
Overall:总共有多少条查询
Time range:查询执行的时间范围
unique:唯一查询数量,即对查询条件进行参数化以后,总共有多少个不同的查询
total:总计 min:最小 max:最大 avg:平均
95%:把所有值从小到大排列,位置位于95%的那个数,这个数一般最具有参考价值
median:中位数,把所有值从小到大排列,位置位于中间那个数
# 该工具执行日志分析的用户时间,系统时间,物理内存占用大小,虚拟内存占用大小
# 340ms user time, 140ms system time, 23.99M rss, 203.11M vsz
# 工具执行时间
# Current date: Fri Nov 25 02:37:18 2016
# 运行分析工具的主机名
# Hostname: