javascript剑指offer编程练习#2

第五题

题目描述
用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。

var stack1=[]
var stack2=[]
function push(node)
{
   stack1.push(node)
}
function pop()
{
    var temp = stack1.pop();
    while(temp){
        stack2.push(temp);
        temp = stack1.pop();
    }
    var result = stack2.pop();
    temp = stack2.pop();
    while(temp){
        stack1.push(temp);
        temp = stack2.pop();
    }
    return result;

}

还是先来回顾栈队列,栈:先进后出,队列:先进先出。
利用两个栈来实现队列操作,先把stack1的元素逆序压到stack2中,至此,stack2.pop()删除了stack1的前端元素,之后再把stack2中的元素逆序压到stack1中。完成了队列删除流程。

第六题

题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。

function minNumberInRotateArray(rotateArray)
{  
    if(rotateArray.length===0){
       return 0
    }
    var min=0
    rotateArray.forEach(function(i,index){
        if(i>rotateArray[index+1]){
            min=rotateArray[index+1]
        }
    })
    return min
}

寻找旋转数组的旋转轴心即可

第七题

题目描述
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。
n<=39

function Fibonacci(n)
{   
    let a=1,b=1,temp
    if(n<=0){
        return 0
    }else if(n===1||n===2){
        return 1
    }else{
        for(let i=3;i<=n;i++){
            temp=a+b
            a=b
            b=temp   
        }
    }
    return temp
}

在这里插入图片描述
斐波那契黄金比例

第八题

题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

function jumpFloor(n)
{
    var a=1,b=2,temp
    if(n<=0){
        return 0
    }else if(n===1){
        return 1
    }else if(n===2){
        return 2
    } else{
        for(let i=3;i<=n;i++){
            temp=a+b
            a=b
            b=temp   
        }
    }
    return temp
}

青蛙跳问题,可用数学归纳法解决:
n=1时,只有一种跳法f(1)=1
n=2时,有两种跳法f(2)=2
n=3时,有两种情况:第一次跳了一级那就是f(3-1)=f(2)种跳法,第一次跳了两级,那就是f(3-2)=f(1)种跳法
n=4时,有两种情况:第一次跳了一级那就是f(4-1)=f(3)种跳法,第一次跳了两级,那就是f(4-2)=f(3)种跳法
·····
f(n)=f(n-1)+f(n-2)
以此类推,可得出青蛙跳问题就是排出了前两项的斐波那契数列

第九题

题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

function jumpFloorII(number)
{
    if(number<1){
        return 0
    }
    return Math.pow(2,number-1)
}

此问题同样可以用数学归纳法:
f(1)=1
f(2)=f(0)+f(1)
f(3)=f(0)+f(1)+f(2)
···
f(n-1)=f(0)+f(1)+f(2)+···+f(n-2)
f(n)=f(0)+f(1)+f(2)+···+f(n-2)+f(n-1)
f(n)=2*f(n-1)

第十题

题目描述
我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

function rectCover(n)
{
    var a=1,b=2,temp
    if(n<=0){
        return 0
    }else if(n===1){
        return 1
    }else if(n===2){
        return 2
    } else{
        for(let i=3;i<=n;i++){
            temp=a+b
            a=b
            b=temp   
        }
    }
    return temp 
}

斐波那契数列的变种

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值