第五题
题目描述
用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。
var stack1=[]
var stack2=[]
function push(node)
{
stack1.push(node)
}
function pop()
{
var temp = stack1.pop();
while(temp){
stack2.push(temp);
temp = stack1.pop();
}
var result = stack2.pop();
temp = stack2.pop();
while(temp){
stack1.push(temp);
temp = stack2.pop();
}
return result;
}
还是先来回顾栈队列,栈:先进后出,队列:先进先出。
利用两个栈来实现队列操作,先把stack1的元素逆序压到stack2中,至此,stack2.pop()删除了stack1的前端元素,之后再把stack2中的元素逆序压到stack1中。完成了队列删除流程。
第六题
题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
function minNumberInRotateArray(rotateArray)
{
if(rotateArray.length===0){
return 0
}
var min=0
rotateArray.forEach(function(i,index){
if(i>rotateArray[index+1]){
min=rotateArray[index+1]
}
})
return min
}
寻找旋转数组的旋转轴心即可
第七题
题目描述
大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。
n<=39
function Fibonacci(n)
{
let a=1,b=1,temp
if(n<=0){
return 0
}else if(n===1||n===2){
return 1
}else{
for(let i=3;i<=n;i++){
temp=a+b
a=b
b=temp
}
}
return temp
}
斐波那契黄金比例
第八题
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
function jumpFloor(n)
{
var a=1,b=2,temp
if(n<=0){
return 0
}else if(n===1){
return 1
}else if(n===2){
return 2
} else{
for(let i=3;i<=n;i++){
temp=a+b
a=b
b=temp
}
}
return temp
}
青蛙跳问题,可用数学归纳法解决:
n=1时,只有一种跳法f(1)=1
n=2时,有两种跳法f(2)=2
n=3时,有两种情况:第一次跳了一级那就是f(3-1)=f(2)种跳法,第一次跳了两级,那就是f(3-2)=f(1)种跳法
n=4时,有两种情况:第一次跳了一级那就是f(4-1)=f(3)种跳法,第一次跳了两级,那就是f(4-2)=f(3)种跳法
·····
f(n)=f(n-1)+f(n-2)
以此类推,可得出青蛙跳问题就是排出了前两项的斐波那契数列
第九题
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
function jumpFloorII(number)
{
if(number<1){
return 0
}
return Math.pow(2,number-1)
}
此问题同样可以用数学归纳法:
f(1)=1
f(2)=f(0)+f(1)
f(3)=f(0)+f(1)+f(2)
···
f(n-1)=f(0)+f(1)+f(2)+···+f(n-2)
f(n)=f(0)+f(1)+f(2)+···+f(n-2)+f(n-1)
f(n)=2*f(n-1)
第十题
题目描述
我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
function rectCover(n)
{
var a=1,b=2,temp
if(n<=0){
return 0
}else if(n===1){
return 1
}else if(n===2){
return 2
} else{
for(let i=3;i<=n;i++){
temp=a+b
a=b
b=temp
}
}
return temp
}
斐波那契数列的变种