AI
文章平均质量分 92
聊一聊人工智能
WarghostWu
这个作者很懒,什么都没留下…
展开
-
游戏AI的创造思路-技术基础-传感器融合技术
传感器融合技术是指将来自多个传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成所需要的决策和估计而进行的信息处理过程。这种技术模仿了人类专家综合处理信息的能力,能够充分利用多传感器资源,通过合理支配和使用这些传感器及其观测信息,将多传感器在空间或时间上的冗余或互补信息依据某种准则进行组合,从而获得更为广泛全面、准确可信的结论。贝叶斯滤波是一种实时数据处理方法,通过结合先验概率和观测数据,利用贝叶斯定理更新状态的后验概率,从而实现对系统状态的估计。原创 2024-07-12 16:53:55 · 1168 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-行为树
行为树(Behavior Tree, BT)是一种用于表示和执行智能体(如游戏中的角色)行为的图形化建模语言。它由节点组成,这些节点按照树状结构排列,每个节点代表一个行为或决策。行为树通过遍历树结构,根据节点的类型和状态来执行相应的行为或决策逻辑。通过行为树,开发者可以为NPC定义一系列行为,这些行为可以根据游戏状态和NPC状态动态调整。进攻行为:当NPC检测到敌人时,可能会触发进攻行为。进攻行为可能包括移动到攻击位置、瞄准敌人、射击等动作。防御行为。原创 2024-07-12 16:10:18 · 1448 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-情感计算(2)
情感计算在游戏AI中的运用实例原创 2024-07-10 15:12:47 · 779 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-情感计算(1)
情感计算是指通过编程控制机器对一系列人类情绪进行识别、解释、处理和模拟的技术。它旨在使机器具备理解和模拟人类情感的能力,包括识别和解释人类的情感表达(如语音、文字、面部表情和身体语言),以及生成具有情感色彩的内容(如文字、图像或音乐)。情感计算在游戏AI中的应用主要是为了让游戏中的角色更加真实、具有情感反应,从而提升玩家的沉浸感和游戏体验。游戏AI可以通过情感计算来识别玩家的情绪变化,并据此调整角色的行为、对话和故事情节,使游戏更加动态和有趣。情感计算。原创 2024-07-10 14:41:06 · 1637 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-蒙特卡洛树搜索(2)
蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)在国际象棋、RTS游戏、FPS游戏中的应用实例原创 2024-07-09 16:28:44 · 834 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-蒙特卡洛树搜索(1)
蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS)是一种结合了蒙特卡洛方法和树搜索的算法,特别适用于那些通过模拟能够预测结果的问题,如棋类游戏。MCTS通过模拟大量随机游戏来评估每个可行的行动,并基于这些模拟结果选择最优行动。蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)在游戏AI中是一个强大的算法,尤其适用于那些具有庞大状态空间和/或难以评估状态价值的游戏。一个典型的使用实例是将其应用于围棋、国际象棋或类似的策略棋类游戏。原创 2024-07-09 15:40:25 · 1026 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-决策树(2)
决策树应用的实际例子原创 2024-07-08 11:29:23 · 950 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-决策树(1)
决策树算法是一种常用的机器学习算法,它通过递归地选择最佳特征来对数据进行分类或回归。决策树由节点和有向边组成,内部节点表示一个特征或属性,叶节点表示分类或回归的结果。在游戏AI中,决策树可以帮助NPC更智能地做出决策,提高游戏的趣味性和挑战性。决策树是一种基于树结构的决策模型,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。原创 2024-07-08 10:46:35 · 1036 阅读 · 1 评论 -
游戏AI的创造思路-技术基础-遗传算法
遗传算法,选对了遗传算子,那就是优秀的继承者,选错了,那就是传说在祸害遗千年~~~~~原创 2024-07-07 21:12:17 · 885 阅读 · 0 评论 -
使用Python实现CartPole游戏
在深度强化学习内容的介绍中,提出了CartPole游戏进行深度强化学习,现在提供一种用Python简单实现Cart Pole游戏的方法。CartPole 游戏是一个经典的强化学习问题,其中有一个小车(cart)和一个杆(pole)。实现 CartPole 游戏的界面,我们需要自己编写游戏的逻辑和渲染部分。以上的代码提供了 CartPole 游戏的完整实现,包括游戏的物理逻辑、渲染逻辑和主循环。实现,它模拟了 CartPole 游戏的基本机制,并提供了一个可视化界面。绘制小车和杆,并显示在游戏窗口中。原创 2024-07-07 09:00:00 · 641 阅读 · 1 评论 -
游戏AI的创造思路-技术基础-强化学习(2)
深度强化学习(Deep Reinforcement Learning, DRL)是强化学习(Reinforcement Learning, RL)与深度学习(Deep Learning)的结合。在强化学习中,智能体(Agent)通过与环境(Environment)的交互来学习如何完成任务。它通过学习策略(Policy)来最大化从环境中获得的累积奖励(Reward)。深度学习在这里用于估计策略或值函数(Value Function),使得强化学习能够在高维空间(如图像或语音)中进行有效的决策。原创 2024-07-06 10:30:00 · 1062 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-强化学习(1)
强化学习(Reinforcement Learning, RL)是机器学习的一个分支,关注的是智能体(agent)如何在环境中采取行动以最大化某种累积奖励(reward)。智能体通过与环境交互来学习如何完成任务,环境对智能体的每一个动作给出一个奖励或惩罚,智能体的目标是最大化总的奖励。Q函数,也称为Q值函数,用于计算智能体(agent)在某个状态下采取某个动作后所预期的累计回报。它是强化学习中实现智能体学习最优策略以最大化期望回报的关键工具。原创 2024-07-06 09:30:00 · 992 阅读 · 0 评论 -
AI软件开发:助手还是对手?
在软件开发领域,生成式人工智能(AIGC)正以前所未有的速度改变着开发者的工作方式。从代码生成、错误检测到自动化测试,AI工具正在逐步成为开发者不可或缺的助手。然而,这种技术的迅猛发展也引发了一个关键问题:AI究竟是在帮助开发者,还是终将取代他们?原创 2024-07-05 09:00:00 · 476 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-计算机视觉
游戏AI运用计算机视觉,是指在游戏开发和运行过程中,利用计算机视觉技术使游戏中的角色(NPC)或系统能够识别、分析和理解游戏中的图像和视频数据,从而做出更加智能的决策和反应。这种技术结合了图像处理、模式识别和机器学习,使游戏中的非玩家角色能够像人类一样“看到”并理解游戏世界。原创 2024-07-04 17:23:43 · 1528 阅读 · 2 评论 -
游戏AI的创造思路-技术基础-自然语言处理
自然语言处理(Natural Language Processing, NLP)是人工智能(AI)的一个重要领域,它致力于创建能够理解、分析和生成人类语言(包括书面和口头语言)的软件系统。在游戏领域,NLP使游戏AI能够解析玩家的语音或文本输入,理解其意图,并生成相应的文本回复或合成语音进行反馈,从而提升游戏的交互性和沉浸感。HMM是一种概率模型,用于描述一个隐藏的马尔可夫链和观测序列之间的关系。在自然语言处理中,HMM可以用于文本生成和情感分析。其核心计算公式包括:其中,原创 2024-07-03 16:53:37 · 1333 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-tanh函数详解
tanh函数,全称双曲正切函数(hyperbolic tangent function),是深度学习中常用的一种激活函数。它的数学定义是:其中,代表自然对数的底数。函数的输出值被映射到-1和1之间,这使得它特别适用于需要将输出值中心化到0的情况。原创 2024-07-02 17:06:14 · 816 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-关于艾宾浩斯遗忘曲线的迷思
艾宾浩斯遗忘曲线(Ebbinghaus Forgetting Curve)是描述人类记忆遗忘规律的一种曲线,由德国心理学家赫尔曼·艾宾浩斯(Hermann Ebbinghaus)通过大量实验得出。艾宾浩斯遗忘曲线描述了人们在学习后随时间推移对信息的记忆保持程度。它表明,人们在初次学习后,记忆会迅速遗忘,但随着时间的推移,遗忘速度会逐渐减慢。原创 2024-07-01 14:26:25 · 1289 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-深度学习(7)TF
Transformer算法是一种基于自注意力机制的神经网络结构,由Vaswani等人在2017年提出,最初应用于机器翻译任务。它通过多层自注意力机制和前馈神经网络对输入序列和输出序列进行处理,实现序列到序列的映射转换。原创 2024-06-28 17:42:00 · 1255 阅读 · 0 评论 -
OpenAI“断供”对我们的影响之我见
近日,美国人工智能公司OpenAI宣布,将于7月起关闭对中国内地的GPT访问,此举引发了业内广泛关注和讨论。:OpenAI官方推送的邮件指出,自2024年7月9日起,将阻止中国内地的IP访问其工具,包括ChatGPT等。:此次关闭访问不仅限于中国内地,还包括俄罗斯、伊朗等地区。同时,虽然OpenAI的API已向161个国家和地区开放,但中国内地和中国香港并未包含在其中。原创 2024-06-28 09:00:00 · 1026 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-sigmoid函数详解
sigmoid函数是一种常见的数学函数,其形状为“S”形曲线。在机器学习和深度学习中,特别是在处理二分类问题时,sigmoid函数被广泛用作激活函数。sigmoid函数的数学公式为:其中,是自然对数的底数(约等于2.71828)。sigmoid函数的导数定义为函数值与其补的乘积,具体公式为:其中,是sigmoid函数的值。这个公式表明,sigmoid函数的导数可以通过原函数的值来计算。原创 2024-06-26 17:07:33 · 1116 阅读 · 1 评论 -
游戏AI的创造思路-技术基础-深度学习(6)
深度信念网络是由多层受限玻尔兹曼机(Restricted Boltzmann Machines, RBM)堆叠而成的生成式图模型。它包含多个层次,每一层都学习数据中的高级抽象特征。在DBN中,最底层是可见层,负责接收输入数据;而顶层及其它所有隐藏层则是RBM。特征学习:DBN可以自动从游戏数据中学习到有意义的特征表示。这些特征可以用于玩家行为分析、游戏内容推荐等任务。智能生成:利用DBN的生成能力,可以生成新的游戏内容,如关卡设计、角色动作等,为游戏提供丰富的多样性和可玩性。智能控制。原创 2024-06-26 16:41:30 · 1671 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-深度学习(5)
自编码器(Autoencoder, AE)是一种数据的压缩算法,其中压缩和解压缩函数是数据相关的、有损的、从样本中自动学习的。它通常用于学习数据的高效编码,在神经网络的形式下,自编码器可以用于降维和特征学习。在游戏AI中,自编码器可以被用于数据的压缩、特征提取或异常检测等任务。原创 2024-06-25 12:00:00 · 1358 阅读 · 0 评论 -
GPT-5的未来愿景:技术突破、智能协作与伦理道德考量
首先,我们可以建立明确的伦理准则,为GPT-5的开发和使用制定一套明确的道德规范,包括尊重人权、保护隐私、避免歧视等原则。更值得一提的是,GPT-5在语义理解和推理方面的能力提升,将使其能够更深刻地捕捉文本的内在含义,为智能写作、推荐系统以及舆情分析等领域开辟出前所未有的新天地。展望未来,GPT-5的发展愿景将触及多个前沿领域,为用户带来逼真沉浸的虚拟体验,并推动各行业的数字化转型和升级。然而,在这一过程中,我们必须始终牢记伦理道德和安全性的重要性,确保技术发展的可持续性和社会责任感。原创 2024-06-25 09:00:00 · 345 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-深度学习(4)
一个生成器(Generator)一个判别器(Discriminator)生成器的任务是捕捉样本数据的分布并生成新的数据样本,而判别器则试图区分输入数据是来自真实数据集还是由生成器生成的。原创 2024-06-24 17:12:52 · 1014 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-深度学习(3)
长短期记忆网络(LSTM,Long Short-Term Memory)算法是一种特殊的循环神经网络(RNN),它旨在解决传统RNN在处理长序列数据时遇到的梯度消失和梯度爆炸问题,从而更有效地学习序列中的长期依赖关系。为了最小化训练误差,通常使用梯度下降法,如应用时序性倒传递算法,来依据错误修改每次的权重。此外,LSTM有多种变体,其中一个重要的版本是门控循环单元(GRU)。LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。其表现通常比时间递归神经网络及隐马尔科夫模型(HMM)更好。原创 2024-06-24 16:26:37 · 931 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-深度学习(2)
由于C++实现RNN涉及较多底层细节和TensorFlow C++ API的复杂使用,通常建议先在Python环境中进行模型的开发和调试,然后再考虑将模型导出为可在C++环境中使用的格式(如TensorFlow的SavedModel格式),最后在C++中进行加载和使用。为了解决RNN的这些缺点,研究者们提出了许多改进方案,如LSTM(长短期记忆网络)和GRU(门控循环单元)等变体结构,它们通过引入门控机制和记忆单元来改进RNN的性能,特别是在处理长序列和捕捉长期依赖方面取得了显著进展。原创 2024-06-22 19:00:00 · 999 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-深度学习(1)
深度学习(Deep Learning)是机器学习的一个子领域,它依赖于神经网络的结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。简单来说,深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够识别和解释各种数据,如文字、图像和声音等,从而实现人工智能的目标。与传统的机器学习技术相比,深度学习可以自动提取数据的特征,而无需人工设计和选择特征。原创 2024-06-22 14:00:00 · 904 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-机器学习(2)
贝叶斯定理:用于计算后验概率,即在已知某些特征的情况下,样本属于某个类别的概率。特征条件独立假设:朴素贝叶斯假设各个特征之间相互独立,这是算法“朴素”之名的由来。尽管这个假设在实际应用中往往不成立,但朴素贝叶斯算法在很多情况下仍然表现良好。数据准备:准备训练数据集,包括特征和对应的类别标签。计算先验概率:计算每个类别在训练数据中出现的概率。计算条件概率:对于每个特征,计算它在每个类别中出现的概率。应用贝叶斯定理。原创 2024-06-21 17:59:06 · 1040 阅读 · 0 评论 -
游戏AI的创造思路-技术基础-机器学习(1)
机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。机器学习是对能通过经验自动改进的计算机算法的研究。机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。定义:半监督学习是一种结合有标记数据和无标记数据进行学习的方法,旨在通过同时利用这两种类型的数据来提高模型的准确性和泛化能力。基本思想:在训练过程中,半监督学习算法不仅依赖于标记数据提供的明确指导,还利用未标记数据中的潜在结构和信息来增强模型的学习效果。原创 2024-06-21 17:01:45 · 879 阅读 · 0 评论 -
游戏AI的创造思路-打造聪明的NPC
游戏AI的创造思路通常涉及多个方面,本文仅在讨论一些基本的游戏AI设计思路(其实是挖了个大坑,后续慢慢补上各个方面的详细讨论、方法和示例代码),以期抛砖引玉。原创 2024-06-20 19:45:05 · 866 阅读 · 1 评论 -
AI在创造还是毁掉音乐?合作与辅助才是正道的光
AI系统首先需要大量的音乐数据进行学习。这些数据可以包括不同风格、时期的音乐作品,以及相关的音乐理论知识。通过这些数据,AI学习音乐的结构、旋律、和声等元素。AI分析训练数据,提取音乐特征,如音高、节奏、音色、力度等。这些特征是音乐生成的基础。使用机器学习算法,尤其是深度学习技术,构建能够理解和生成音乐的模型。常见的模型包括循环神经网络(RNN)、长短期记忆网络(LSTM)和Transformer等。AI使用生成算法来创作音乐。原创 2024-06-20 17:59:07 · 921 阅读 · 0 评论 -
AI大模型:垂直大模型vs通用大模型
垂直大模型是专为某一特定领域或任务设计的大模型,以满足该领域的特定需求。针对性强:针对特定领域的数据和任务进行训练和优化。数据集专业:使用特定领域的数据集进行训练,确保模型对该领域有深入的理解。适应范围:适用于需要深入分析和处理特定领域数据的场景,例如医疗诊断、法律分析、金融风险评估等专业性强的领域。特定任务性能优异:由于专注于某一领域,因此能够在该领域达到很高的精度和效率。计算资源消耗相对较低:相比通用大模型,垂直大模型在训练和推理时所需的计算资源较少。原创 2024-06-19 18:09:02 · 2692 阅读 · 0 评论