BMS--4个电池主动均衡

4个电池主动均衡

在这里插入图片描述

SOC 均衡效果

在这里插入图片描述

电压波形图

在这里插入图片描述

电流图

在这里插入图片描述

总结

电动汽车发展关键技术是动力电池及其管理技术,电池是电动汽车的心脏,是能量的来源,BMS是关键,而BMS的核心却是电池均衡,离开了高效的电池均衡技术,其他依赖于均衡控制的所有控制就无从谈起,续航里程的稳定性如何就全靠运气了。这种均衡技术不改变电池组的物理连接,可以与BMS实现无缝结合,实现强强联合,充分发挥各自的优势,实现电池管理的最佳化。

### 模糊PID控制在电池均衡中的实现与应用 #### 背景介绍 传统PID控制器依赖于精确的数学模型,而在实际应用场景中,尤其是对于复杂多变的动力电池系统而言,这种假设往往难以满足。为了提高系统的鲁棒性和适应性,模糊PID控制器被引入到电池管理领域。 #### 控制器构成原理 模糊PID控制系统主要由三大部分组成:模糊化接口、规则库以及解模糊化接口[^2]。具体来说: - **模糊化接口**负责将输入信号转换成适合模糊推理的语言变量; - **规则库**存储了一系列预先定义好的条件语句,用来指导如何根据当前状态调整输出; - **解模糊化接口**则是把经过模糊运算后的结果重新映射回实际控制量上。 #### 应用于电池均衡的具体方式 当应用于电池均衡时,模糊PID控制器能够依据各节电池的状态差异自动调节充电/放电速率,从而达到延长整体寿命的目的。例如,在检测到某几颗电池电压过高或过低的情况下,可以通过改变PWM波形占空比等方式适当增减其参与工作的程度;与此同时,考虑到环境因素的影响(比如温度变化),还可以进一步优化算法性能以确保安全可靠运行[^3]。 #### MATLAB代码实例展示 下面给出一段简单的Matlab代码片段作为概念验证,展示了如何利用遗传算法来寻找最优的模糊PID参数组合,并将其应用于模拟环境中的一组串联锂电池平衡过程之中。 ```matlab % 定义目标函数——这里简化为求取误差平方和最小值 function J = obj_func(x) % x=[kp ki kd mu sigma];其中mu,sigma分别为隶属度函数中心位置及宽度 global ref_voltages measured_voltages; error=ref_voltages-measured_voltages; % 计算偏差向量 u=fuzzy_pid_controller(error,x); % 获取控制作用u(t) J=sum((error-u).^2); % 返回代价J(w) end % 遗传算法寻优部分... options=gaoptimset('Display','iter'); [x_best,fval]=ga(@obj_func,5,[],[],[],[],lb,ub,[],options); disp(['Optimal parameters found: ',num2str(x_best)]); ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值